Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Bayer is active.

Publication


Featured researches published by Daniela Bayer.


Nature | 2007

Adaptive subwavelength control of nano-optical fields.

Martin Aeschlimann; M. Bauer; Daniela Bayer; Tobias Brixner; F. Javier García de Abajo; Walter Pfeiffer; C. Spindler; Felix Steeb

Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion. Shaping of the polarization of the laser pulse provides a particularly efficient and versatile nano-optical manipulation method. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses and then probing the lateral field distribution by two-photon photoemission electron microscopy. In this combination of adaptive control and nano-optics, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Spatiotemporal control of nanooptical excitations

Martin Aeschlimann; M. Bauer; Daniela Bayer; Tobias Brixner; Stefan Cunovic; Frank Dimler; Alexander Fischer; Walter Pfeiffer; Christian Schneider; Felix Steeb; Christian Strüber; Dmitri V. Voronine

The most general investigation and exploitation of light-induced processes require simultaneous control over spatial and temporal properties of the electromagnetic field on a femtosecond time and nanometer length scale. Based on the combination of polarization pulse shaping and time-resolved two-photon photoemission electron microscopy, we demonstrate such control over nanoscale spatial and ultrafast temporal degrees of freedom of an electromagnetic excitation in the vicinity of a nanostructure. The time-resolved cross-correlation measurement of the local photoemission yield reveals the switching of the nanolocalized optical near-field distribution with a lateral resolution well below the diffraction limit and a temporal resolution on the femtosecond time scale. In addition, successful adaptive spatiotemporal control demonstrates the flexibility of the method. This flexible simultaneous control of temporal and spatial properties of nanophotonic excitations opens new possibilities to tailor and optimize the light–matter interaction in spectroscopic methods as well as in nanophotonic applications.


Nano Letters | 2013

Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices

Christoph Lemke; Christian Schneider; Till Leißner; Daniela Bayer; Jörn W. Radke; Alexander Fischer; Pascal Melchior; Andrey B. Evlyukhin; Boris N. Chichkov; Carsten Reinhardt; M. Bauer; Martin Aeschlimann

The spatiotemporal evolution of a SPP wave packet with femtosecond duration is experimentally investigated in two different plasmonic focusing structures. A two-dimensional reconstruction of the plasmonic field in space and time is possible by the numerical analysis of interferometric time-resolved photoemission electron microscopy data. We show that the time-integrated and time-resolved view onto the wave packet dynamics allow one to characterize and compare the capabilities of two-dimensional components for use in plasmonic devices operating with ultrafast pulses.


Plasmonics | 2014

Normal-Incidence Photoemission Electron Microscopy (NI-PEEM) for Imaging Surface Plasmon Polaritons

Philip Kahl; Simone Wall; Christian Witt; Christian Schneider; Daniela Bayer; Alexander Fischer; Pascal Melchior; Michael Horn-von Hoegen; Martin Aeschlimann; Frank-J. Meyer zu Heringdorf

We introduce a novel time-resolved photoemission-based near-field illumination method, referred to as femtosecond normal-incidence photoemission microscopy (NI-PEEM). The change from the commonly used grazing-incidence to normal-incidence illumination geometry has a major impact on the achievable contrast and, hence, on the imaging potential of transient local near fields. By imaging surface plasmon polaritons in normal light incidence geometry, the observed fringe spacing directly resembles the wavelength of the plasmon wave. Our novel approach provides a direct descriptive visualization of SPP wave packets propagating across a metal surface.


Journal of Nanomaterials | 2008

Time-Resolved 2PPE and Time-Resolved PEEM as a Probe of LSP's in Silver Nanoparticles

Daniela Bayer; C. Wiemann; Oksana Gaier; M. Bauer; Martin Aeschlimann

The time-resolved two-photon photoemission technique (TR-2PPE) has been applied to study static and dynamic properties of localized surface plasmons (LSP) in silver nanoparticles. Laterally, integrated measurements show the difference between LSP excitation and nonresonant single electron-hole pair creation. Studies below the optical diffraction limit were performed with the detection method of time-resolved photoemission electron microscopy (TR-PEEM). This microscopy technique with a resolution down to 40 nm enables a systematic study of retardation effects across single nanoparticles. In addition, as will be shown in this paper, it is a highly sensitive sensor for coupling effects between nanoparticles.


New Journal of Physics | 2012

Optimal open-loop near-field control of plasmonic nanostructures

Martin Aeschlimann; M. Bauer; Daniela Bayer; Tobias Brixner; Stefan Cunovic; Alexander Fischer; Pascal Melchior; Walter Pfeiffer; Christian Schneider; Christian Strüber; Philip Tuchscherer; Dmitri V. Voronine

Optimal open-loop control, i.e. the application of an analytically derived control rule, is demonstrated for nanooptical excitations using polarization-shaped laser pulses. Optimal spatial near-field localization in gold nanoprisms and excitation switching is realized by applying a shift to the relative phase of the two polarization components. The achieved near-field switching confirms theoretical predictions, proves the applicability of predefined control rules in nanooptical light-matter interaction and reveals local mode interference to be an important control mechanism.


Nanophotonics | 2006

Probing femtosecond plasmon dynamics with nanometer resolution

Jörg Lange; Daniela Bayer; C. Wiemann; Oksana Gaier; Martin Aeschlimann; M. Bauer

In combining time-resolved two-photon photoemission (TR-2PPE) and photoemission electron microscopy (PEEM) the ultrafast dynamics of collective electron excitations in silver nanoparticles (localized surface plasmons - LSP) is probed at femtosecond and nanometer resolution. In two examples we illustrate that a phase-resolved (interferometric) sampling of the LSP-dynamics enables detailed insight into dephasing and propagation processes associated with these excitations. For two close-lying silver nano-dots (diameter 200 nm) we are able to distinguish small particle to particle variations in the plasmon eigenfrequency, which typically give rise to inhomogeneous line-broadening of the plasmon resonance in lateral integrating frequency domain measurements. The observed spatio-temporal modulations in the photoemission yield from a single nanoparticle can be interpreted as local variation in the electric near-field and result from the phase propagation of the plasmon through the particle. Furthermore, we show that the control of the phase between the used femtosecond pump and probe laser pulses used for these experiments can be utilized for an external manipulation of the nanoscale electric near-field distribution at these particles.


New Journal of Physics | 2011

Magnetostatic coupling of 90° domain walls in Fe19Ni81/Cu/Co trilayers

J. Kurde; Jorge Miguel; Daniela Bayer; J Sánchez-Barriga; Florian Kronast; Martin Aeschlimann; H A Dürr; W. Kuch

The magnetic interlayer coupling of Fe19Ni81/Cu/Co trilayered microstructures has been studied by means of x-ray magnetic circular dichroism in combination with photoelectron emission microscopy (XMCD-PEEM). We find that a parallel coupling between magnetic domains coexists with a non-parallel coupling between magnetic domain walls (DWs) of each ferromagnetic layer. We attribute the non-parallel coupling of the two magnetic layers to local magnetic stray fields arising at DWs in the magnetically harder Co layer. In the magnetically softer FeNi layer, non-ordinary DWs, such as 270° and 90° DWs with overshoot of the magnetization either inwards or outwards relative to the turning direction of the Co magnetization, are identified. Micromagnetic simulations reveal that in the absence of magnetic anisotropy, both types of overshooting DWs are energetically equivalent. However, if a uniaxial in-plane anisotropy is present, the relative orientation of the DWs with respect to the anisotropy axis determines which of these DWs is energetically favorable.


Chemical Physics | 2009

Simultaneous Spatial and Temporal Control of Nanooptical Fields

Martin Aeschlimann; M. Bauer; Daniela Bayer; Tobias Brixner; Stefan Cunovic; Frank Dimler; Alexander Fischer; Walter Pfeiffer; Christian Schneider; Felix Steeb; Christian Strüber; Dmitri V. Voronine

Using time-resolved two-photon photoemission electron microscopy we demonstrate simultaneous spatial and temporal control of nanooptical fields. Cross correlation measurements reveal the ultrafast spatial switching of the local excitation on a subdiffraction length scale.


Review of Scientific Instruments | 2008

A new sample holder for laser-excited pump-probe magnetic measurements on a Focus photoelectron emission microscope

Jorge Miguel; Matthias Bernien; Daniela Bayer; Jaime Sánchez-Barriga; Florian Kronast; Martin Aeschlimann; H. A. Dürr; W. Kuch

A custom-made Omicron-compatible sample holder for time-resolved photoelectron emission microscopy experiments is presented. It comprises a sample plate with four contacts that hosts a chip carrier where the semiconductor substrate is mounted. Covering the sample holder, a 6 mm diameter mask protects electrostatically the sample from the extractor lens voltage while keeping the imaging quality unperturbed. The improvements are a greater sample lifetime and the ability to withstand much higher currents in the stripline that provides the magnetic pulse to the magnetic microstructure.

Collaboration


Dive into the Daniela Bayer's collaboration.

Top Co-Authors

Avatar

Martin Aeschlimann

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Brixner

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alexander Fischer

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Felix Steeb

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

C. Wiemann

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Melchior

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge