Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Benati is active.

Publication


Featured researches published by Daniela Benati.


Journal of Virology | 2012

HIV Controllers Maintain a Population of Highly Efficient Th1 Effector Cells in Contrast to Patients Treated in the Long Term

Benoît Vingert; Daniela Benati; Olivier Lambotte; Pierre de Truchis; Laurence Slama; Patricia Jeannin; Moran Galperin; Santiago Perez-Patrigeon; Faroudy Boufassa; William W. Kwok; Fabrice Lemaître; Jean-François Delfraissy; Jacques Thèze; Lisa A. Chakrabarti

ABSTRACT HIV controllers are rare individuals who spontaneously control HIV replication in the absence of antiretroviral therapy. To identify parameters of the CD4 response that may contribute to viral control rather than merely reflect a persistently low viremia, we compared the T helper profiles in two groups of patients with more than 10 years of viral suppression: HIV controllers from the Agence Nationale de Recherche sur le SIDA et les Hépatites Virales (ANRS) CO18 cohort (n = 26) and efficiently treated patients (n = 16). Cells specific for immunodominant Gag and cytomegalovirus (CMV) peptides were evaluated for the production of 10 cytokines and cytotoxicity markers and were also directly quantified ex vivo by major histocompatibility complex (MHC) class II tetramer staining. HIV controller CD4+ T cells were characterized by a higher frequency of gamma interferon (IFN-γ) production, perforin+/CD107a+ expression, and polyfunctionality in response to Gag peptides. While interleukin 4 (IL-4), IL-17, and IL-21 production did not differ between groups, the cells of treated patients produced more IL-10 in response to Gag and CMV peptides, pointing to persistent negative immunoregulation after long-term antiretroviral therapy. Gag293 tetramer-positive cells were detected at a high frequency (0.12%) and correlated positively with IFN-γ-producing CD4+ T cells in the controller group (R = 0.73; P = 0.003). Tetramer-positive cells were fewer in the highly active antiretroviral therapy (HAART) group (0.04%) and did not correlate with IFN-γ production, supporting the notion of a persistent immune dysfunction in HIV-specific CD4+ T cells of treated patients. In conclusion, HIV controllers maintained a population of highly efficient Th1 effectors directed against Gag in spite of a persistently low antigenemia, while patients treated in the long term showed a loss of CD4 effector functions.


Journal of Clinical Investigation | 2016

Public T cell receptors confer high-avidity CD4 responses to HIV controllers

Daniela Benati; Moran Galperin; Olivier Lambotte; Stephanie Gras; Annick Lim; Madhura Mukhopadhyay; Alexandre Nouël; Kristy-Anne Campbell; Brigitte Lemercier; Mathieu Claireaux; Samia Hendou; Pierre Lechat; Pierre de Truchis; Faroudy Boufassa; Jamie Rossjohn; Jean-François Delfraissy; Fernando Arenzana-Seisdedos; Lisa A. Chakrabarti

The rare patients who are able to spontaneously control HIV replication in the absence of therapy show signs of a particularly efficient cellular immune response. To identify the molecular determinants that underlie this response, we characterized the T cell receptor (TCR) repertoire directed at Gag293, the most immunoprevalent CD4 epitope in the HIV-1 capsid. HIV controllers from the ANRS CODEX cohort showed a highly skewed TCR repertoire that was characterized by a predominance of TRAV24 and TRBV2 variable genes, shared CDR3 motifs, and a high frequency of public clonotypes. The most prevalent public clonotypes generated TCRs with affinities at the higher end of values reported for naturally occurring TCRs. The high-affinity Gag293-specific TCRs were cross-restricted by up to 5 distinct HLA-DR alleles, accounting for the expression of these TCRs in HIV controllers of diverse genetic backgrounds. Transfer of these TCRs to healthy donor CD4+ T cells conferred high antigen sensitivity and polyfunctionality, thus recapitulating key features of the controller CD4 response. Transfer of a high-affinity Gag293-specific TCR also redirected CD8+ T cells to target HIV-1 capsid via nonconventional MHC II restriction. Together, these findings indicate that TCR clonotypes with superior functions are associated with HIV control. Amplification or transfer of such clonotypes may contribute to immunotherapeutic approaches aiming at a functional HIV cure.


PLOS ONE | 2013

Altered Responses to Homeostatic Cytokines in Patients with Idiopathic CD4 Lymphocytopenia

Florence Bugault; Daniela Benati; Luc Mouthon; Ivan Landires; Pierre Rohrlich; Vincent Pestre; Jacques Thèze; Olivier Lortholary; Lisa A. Chakrabarti

Idiopathic CD4 lymphocytopenia (ICL) is a rare immune deficiency characterized by a protracted CD4+ T cell loss of unknown etiology and by the occurrence of opportunistic infections similar to those seen in AIDS. We investigated whether a defect in responses to cytokines that control CD4+ T cell homeostasis could play a role in ICL. Immunophenotype and signaling responses to interleukin-7 (IL-7), IL-2, and thymic stromal lymphopoietin (TSLP) were analyzed by flow cytometry in CD4+ T cells from 15 ICL patients and 15 healthy blood donors. The induction of phospho-STAT5 after IL-7 stimulation was decreased in memory CD4+ T cells of some ICL patients, which correlated with a decreased expression of the IL-7Rα receptor chain (R = 0.74, p<0.005) and with lower CD4+ T cell counts (R = 0.69, p<0.005). IL-2 responses were also impaired, both in the Treg and conventional memory subsets. Decreased IL-2 responses correlated with decreased IL-7 responses (R = 0.75, p<0.005), pointing to combined defects that may significantly perturb CD4+ T cell homeostasis in a subset of ICL patients. Unexpectedly, responses to the IL-7-related cytokine TSLP were increased in ICL patients, while they remained barely detectable in healthy controls. TSLP responses correlated inversely with IL-7 responses (R = −0.41; p<0.05), suggesting a cross-regulation between the two cytokine systems. In conclusion, IL-7 and IL-2 signaling are impaired in ICL, which may account for the loss of CD4+ T cell homeostasis. Increased TSLP responses point to a compensatory homeostatic mechanism that may mitigate defects in γc cytokine responses.


Science immunology | 2018

CD4+T cell-mediated HLA class II cross-restriction in HIV controllers.

Moran Galperin; Carine Farenc; Madhura Mukhopadhyay; Dhilshan Jayasinghe; Amandine Decroos; Daniela Benati; Li Lynn Tan; Lisa Ciacchi; Hugh H. Reid; Jamie Rossjohn; Lisa A. Chakrabarti; Stephanie Gras

The structural basis of HIV-Gag recognition by class II–restricted T cell receptors in spontaneous controllers. Spontaneous HIV controllers A small number of HIV-infected individuals (<1%) can spontaneously control HIV in the absence of antiretroviral therapy. Because CD4+ and CD8+ T cell responses are thought to contribute to protection, HIV-responsive T cell receptors (TCRs) from these individuals are of considerable interest. Galperin et al. have examined how three public class II–restricted TCRs—F24, F25, and F5—documented in spontaneous controllers are capable of binding a Gag peptide, Gag 293–312, in the context of multiple HLA-DR molecules. By solving the structures of multiple TCR–peptide–HLA-DR complexes, the authors report that the ability of these TCRs to recognize this Gag peptide in the context of multiple HLA-DR allomorphs is shaped by extensive contacts between these TCRs and the peptide itself. Rare individuals, termed HIV controllers, spontaneously control HIV infection by mounting efficient T cell responses against the virus. Protective CD4+ T cell responses from HIV controllers involve high-affinity public T cell receptors (TCRs) recognizing an immunodominant capsid epitope (Gag293) presented by a remarkably broad array of human leukocyte antigen (HLA) class II molecules. Here, we determine the structures of a prototypical public TCR bound to HLA-DR1, HLA-DR11, and HLA-DR15 molecules presenting the Gag293 epitope. TCR recognition was driven by contacts with the Gag293 epitope, a feature that underpinned the extensive HLA cross-restriction. These high-affinity TCRs promoted mature immunological synapse formation and cytotoxic capacity in both CD4+ and CD8+ T cells. The public TCRs suppressed HIV replication in multiple genetic backgrounds ex vivo, emphasizing the functional advantage conferred by broad HLA class II cross-restriction.


Mbio | 2018

A High Frequency of HIV-Specific Circulating Follicular Helper T Cells Is Associated with Preserved Memory B Cell Responses in HIV Controllers

Mathieu Claireaux; Moran Galperin; Daniela Benati; Alexandre Nouël; Madhura Mukhopadhyay; J. Klingler; P. de Truchis; David Zucman; Samia Hendou; Faroudy Boufassa; C. Moog; Olivier Lambotte; Lisa A. Chakrabarti

ABSTRACT Follicular helper T cells (Tfh) play an essential role in the affinity maturation of the antibody response by providing help to B cells. To determine whether this CD4+ T cell subset may contribute to the spontaneous control of HIV infection, we analyzed the phenotype and function of circulating Tfh (cTfh) in patients from the ANRS CO21 CODEX cohort who naturally controlled HIV-1 replication to undetectable levels and compared them to treated patients with similarly low viral loads. HIV-specific cTfh (Tet+), detected by Gag-major histocompatibility complex class II (MHC-II) tetramer labeling in the CD45RA− CXCR5+ CD4+ T cell population, proved more frequent in the controller group (P = 0.002). The frequency of PD-1 expression in Tet+ cTfh was increased in both groups (median, >75%) compared to total cTfh (<30%), but the intensity of PD-1 expression per cell remained higher in the treated patient group (P = 0.02), pointing to the persistence of abnormal immune activation in treated patients. The function of cTfh, analyzed by the capacity to promote IgG secretion in cocultures with autologous memory B cells, did not show major differences between groups in terms of total IgG production but proved significantly more efficient in the controller group when measuring HIV-specific IgG production. The frequency of Tet+ cTfh correlated with HIV-specific IgG production (R = 0.71 for Gag-specific and R = 0.79 for Env-specific IgG, respectively). Taken together, our findings indicate that key cTfh-B cell interactions are preserved in controlled HIV infection, resulting in potent memory B cell responses that may play an underappreciated role in HIV control. IMPORTANCE The rare patients who spontaneously control HIV replication in the absence of therapy provide a unique model to identify determinants of an effective anti-HIV immune response. HIV controllers show signs of particularly efficient antiviral T cell responses, while their humoral response was until recently considered to play only a minor role in viral control. However, emerging evidence suggests that HIV controllers maintain a significant but “silent” antiviral memory B cell population that can be reactivated upon antigenic stimulation. We report that cTfh help likely contributes to the persistence of controller memory B cell responses, as the frequency of HIV-specific cTfh correlated with the induction of HIV-specific antibodies in functional assays. These findings suggest that T follicular help may contribute to HIV control and highlight the need for inducing such help in HIV vaccine strategies that aim at eliciting persistent B cell responses. The rare patients who spontaneously control HIV replication in the absence of therapy provide a unique model to identify determinants of an effective anti-HIV immune response. HIV controllers show signs of particularly efficient antiviral T cell responses, while their humoral response was until recently considered to play only a minor role in viral control. However, emerging evidence suggests that HIV controllers maintain a significant but “silent” antiviral memory B cell population that can be reactivated upon antigenic stimulation. We report that cTfh help likely contributes to the persistence of controller memory B cell responses, as the frequency of HIV-specific cTfh correlated with the induction of HIV-specific antibodies in functional assays. These findings suggest that T follicular help may contribute to HIV control and highlight the need for inducing such help in HIV vaccine strategies that aim at eliciting persistent B cell responses.


Journal of Immunology | 2017

DNA Vaccination by Electroporation Amplifies Broadly Cross-Restricted Public TCR Clonotypes Shared with HIV Controllers

Madhura Mukhopadhyay; Moran Galperin; Mandar Patgaonkar; Sandhya Vasan; David D. Ho; Alexandre Nouël; Mathieu Claireaux; Daniela Benati; Olivier Lambotte; Yaoxing Huang; Lisa A. Chakrabarti

Rare patients who spontaneously control HIV replication provide a useful model to inform HIV vaccine development. HIV controllers develop particularly efficient antiviral CD4+ T cell responses mediated by shared high-affinity TCRs. To determine whether the candidate DNA vaccine ADVAX could induce similar responses, we analyzed Gag-specific primary CD4+ T cells from healthy volunteers who received ADVAX DNA by electroporation. Vaccinated volunteers had an immunodominant response to the Gag293 epitope with a functional avidity intermediate between that of controllers and treated patients. The TCR repertoire of Gag293-specific CD4+ T cells proved highly biased, with a predominant usage of the TCRβ variable gene 2 (TRBV2) in vaccinees as well as controllers. TCRα variable gene (TRAV) gene usage was more diverse, with the dominance of TRAV29 over TRAV24 genes in vaccinees, whereas TRAV24 predominated in controllers. Sequence analysis revealed an unexpected degree of overlap between the specific repertoires of vaccinees and controllers, with the sharing of TRAV24 and TRBV2 public motifs (>30%) and of public clonotypes characteristic of high-affinity TCRs. MHC class II tetramer binding revealed a broad HLA-DR cross-restriction, explaining how Gag293-specific public clonotypes could be selected in individuals with diverse genetic backgrounds. TRAV29 clonotypes also proved cross-restricted, but conferred responses of lower functional avidity upon TCR transfer. In conclusion, DNA vaccination by electroporation primed for TCR clonotypes that were associated with HIV control, highlighting the potential of this vaccine delivery method. To our knowledge, this study provides the first proof-of-concept that clonotypic analysis may be used as a tool to monitor the quality of vaccine-induced responses and modulate these toward “controller-like” responses.


BIO-PROTOCOL | 2017

MHC Class II Tetramer Labeling of Human Primary CD4+ T Cells from HIV Infected Patients

Moran Galperin; Daniela Benati; Mathieu Claireaux; Madhura Mukhopadhyay; Lisa A. Chakrabarti


2018 Conference on Retroviruses and Opportunistic Infections (CROI) | 2018

Specific cTfh frequency correlates with memory B cell responses in HIV controllers.

Claireaux Mathieu; Galperin Moran; Daniela Benati; Nouël Alexandre; Mukhopadhyay Madhura; Pierre de Truchis; Zucman David; Hendou Samia; Boufassa Faroudy; Lambotte Olivier; La. Chakrabarti


Archive | 2016

T cell receptors from the HIV-specific repertoire, means for their production and therapeutic uses thereof

Lisa A. Chakrabarti; Daniela Benati; Moran Galperin


Archive | 2016

supp-data-benati-galperin-chakrabarti-high-avidity-TCR-in-controllers-JCI83792-16

Daniela Benati; Moran Galperin; Olivier Lambotte; Stephanie Gras; Annick Lim; Madhura Mukhopadhyay; Alexandre Nouël; Kristy-Anne Campbell; Brigitte Lemercier; Mathieu Claireaux; Samia Hendou; Pierre Lechat; Pierre de Truchis; Faroudy Boufassa; Jamie Rossjohn; Jean-François Delfraissy; Fernando Arenzana-Seisdedos; Lisa A. Chakrabarti

Collaboration


Dive into the Daniela Benati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge