Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Bermúdez-Aguirre is active.

Publication


Featured researches published by Daniela Bermúdez-Aguirre.


Journal of Food Science | 2008

Microstructure of Fat Globules in Whole Milk after Thermosonication Treatment

Daniela Bermúdez-Aguirre; R. Mawson; Gustavo V. Barbosa-Cánovas

The structure of fat globules in whole milk was studied after heat and thermosonication treatments to observe what happens during these processes at the microscopic level using scanning electron microscopy. Raw whole milk was thermosonicated in an ultrasonic processor-Hielscher UP400S (400 W, 24 kHz, 120 microm amplitude), using a 22-mm probe at 63 degrees C for 30 min. Heat treatment involved heating the milk at 63 degrees C for 30 min. Color and fat content were measured to correlate the images with analytical measurements. The results showed that the surface of the fat globule was completely roughened after thermosonication. Ultrasound waves were responsible for disintegrating the milk fat globule membrane (MFGM) by releasing the triacylglycerols. Furthermore, the overall structure of milk after sonication showed smaller fat globules (smaller than 1 microm) and a granular surface. This was due to the interaction between the disrupted MFGM and some casein micelles. Minor changes in the aspect of the globules between thermal and raw milks were detected. Color measurements showed higher L* values for sonicated samples. Sonicated milk was whiter (92.37 +/- 0.20) and generally showed a better degree of luminosity and homogenization compared to thermal treated milk (88.25 +/- 0.67) and raw milk (87.82 +/- 0.18). Fat content analysis yielded a higher value after sonication (4.24%) compared to untreated raw milk (4.04%) because fat extraction is more efficient after sonication. The advantages of thermosonicated milk are that it can be pasteurized and homogenized in just 1 step, it can be produced with important cost savings, and it has better characteristics, making thermosonication a potential processing method for milk and most other dairy products.


Archive | 2011

Ultrasound Applications in Food Processing

Daniela Bermúdez-Aguirre; Tamara Mobbs; Gustavo V. Barbosa-Cánovas

Food scientists today are focused on the development of not only microbiologically safe products with a long storage life, but, at the same time, products that have fresh-like characteristics and a high quality in taste, flavor, and texture. This focus is based on the needs of the consumer, which is one of the main reasons for constant research in the so-called area of emerging technologies. Traditionally, thermal treatments have been used to produce safe food products. Pasteurization of juice, milk, beer, and wine is a common process in which the final product has a storage life of some weeks (generally under refrigeration). However, vitamins, taste, color, and other sensorial characteristics are decreased with this treatment. High temperature is responsible for these effects and can be observed in the loss of nutritional components and changes in flavor, taste, and texture, often creating the need for additives to improve the product.


International Journal of Food Microbiology | 2011

A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and thermo-sonication

Gretchen Marx; Abigail Moody; Daniela Bermúdez-Aguirre

Nonthermal technologies are becoming more popular in food processing; however, little detailed research has been conducted on the study of the lethal effect of these technologies on certain microorganisms. Saccharomyces cerevisiae is a yeast related to spoilage of fruit products such as juices; novel technologies have been explored to inactivate this yeast. Three nonthermal technologies, high hydrostatic pressure (HHP), pulsed electric fields (PEF) and thermo-sonication (TS), were used to evaluate and to compare the structural damage of yeast cells after processing. Processing conditions were chosen based on previous experiments to ensure the death of cells; HHP was conducted at 600 MPa for 7 min (room temperature, 21 °C); for PEF, 30.76 kV/cm at 40 °C and 21 pulses (2 μs each), and finally for TS the conditions were 120 μm, 60 °C and 30 min in continuous and pulsed modes; all treatments were applied in apple juice. Cells were prepared for electron microscopy using an innovative and short microwave assisted dehydration technique. Scanning electron microscopy showed the degree of damage to the cells after processing and illustrated the important and particular characteristics of each technology. Cells treated with high hydrostatic pressure showed a total disruption of the cell membrane, perforation, and release of the cell wall; scars were also observed on the surface of the pressurized cells. PEF treated cells showed less superficial damage, with the main changes being the deformation of the cells, apparent fusion of cells, the formation of pores, and the breakdown of the cell wall in some cells. Finally, the thermo-sonicated cells showed a similar degree of cellular damage to their structure regardless of whether the TS was applied continuously or pulsed. The main characteristics of cellular death for this technology were the erosion and disruption of the cellular membrane, formation of orifices on the surface, lysis of cells causing the release of intracellular contents, roughness of the cell membrane, and displacement of cell debris to the surface of other cells. This study confirms some theories about cell inactivation and presents new and detailed results about nonthermal technologies, but also shows that after using the above mentioned conditions, recovery of cells, specifically those that are pressurized and thermo-sonicated, it is not possible to do it following the high extent of damage observed in the entire population. Furthermore, a faster methodology that was used in sample preparation for electron microscopy provided high quality resolution images, allowing closer study of the detail of structural lethal effects on treated cells.


Food Chemistry | 2015

Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage

Héctor E. Martínez-Flores; Ma. Guadalupe Garnica-Romo; Daniela Bermúdez-Aguirre; Prashant Raj Pokhrel; Gustavo V. Barbosa-Cánovas

Thermosonication has been successfully tested in food for microbial inactivation; however, changes in bioactive compounds and shelf-life of treated products have not been thoroughly investigated. Carrot juice was thermo-sonicated (24 kHz, 120 μm amplitude) at 50 °C, 54 °C and 58 °C for 10 min (acoustic power 2204.40, 2155.72, 2181.68 mW/mL, respectively). Quality parameters and microbial growth were evaluated after processing and during storage at 4 °C. Control and sonicated treatments at 50 °C and 54 °C had 10, 12 and 14 d of shelf-life, respectively. Samples sonicated at 58 °C had the best quality; microbial growth remained low at around 3-log for mesophiles, 4.5-log for yeasts and molds and 2-log for enterobacteria after 20 d of storage. Furthermore, thermo-sonicated juice at 58 °C retained >98% of carotenoids and 100% of ascorbic acid. Phenolic compounds increased in all stored, treated juices. Thermo-sonication is therefore a promising technology for preserving the quality of carrot juice by minimising the physicochemical changes during storage, retarding microbial growth and retaining the bioactive compounds.


Meat Science | 2014

Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products

Gustavo V. Barbosa-Cánovas; Ilce Gabriela Medina-Meza; Kezban Candoğan; Daniela Bermúdez-Aguirre

Conventional thermal processes have been very reliable in offering safe sterilized meat products, but some of those products are of questionable overall quality. Flavor, aroma, and texture, among other attributes, are significantly affected during such processes. To improve those quality attributes, alternative approaches to sterilizing meat and meat products have been explored in the last few years. Most of the new strategies for sterilizing meat products rely on using thermal approaches, but in a more efficient way than in conventional methods. Some of these emerging technologies have proven to be reliable and have been formally approved by regulatory agencies such as the FDA. Additional work needs to be done in order for these technologies to be fully adopted by the food industry and to optimize their use. Some of these emerging technologies for sterilizing meat include pressure assisted thermal sterilization (PATS), microwaves, and advanced retorting. This review deals with fundamental and applied aspects of these new and very promising approaches to sterilization of meat products.


Journal of Food Science | 2011

Milk Processed by Pulsed Electric Fields: Evaluation of Microbial Quality, Physicochemical Characteristics, and Selected Nutrients at Different Storage Conditions

Daniela Bermúdez-Aguirre; Sulmer Fernandez; Heracleo Esquivel; Patrick C. Dunne; Gustavo V. Barbosa-Cánovas

UNLABELLED Pulsed electric fields (PEF) technology was used to pasteurize raw milk under selected treatments. Processing conditions were: temperature 20, 30, and 40 °C, electric field 30.76 to 53.84 kV/cm, and pulse numbers 12, 24, and 30 for skim milk (SM), and 12, 21, and 30 for whole milk (WM) (2 μs pulse width, monopolar). Physicochemical parameters (pH, electrical conductivity, density, color, solids nonfat [SNF]) and composition (protein and fat content) were measured after processing. Shelf life of SM and WM was assessed after processing at 46.15 kV/cm, combined with temperature (20 to 60 °C) and 30 pulses. Mesophilic and psychrophilic loads and pH were evaluated during storage at 4 and 21 °C. Results showed minor variations in physicochemical properties after processing. There was an interesting trend in SM in SNF, which decreased as treatment became stronger; similar behavior was observed for fat and protein, showing a 0.18% and 0.17% decrease, respectively, under the strongest conditions. Protein and fat content decreased in WM samples treated at 40 °C, showing a decrease in protein (0.11%), and an even higher decrease in fat content. During storage, PEF-treated milk samples showed higher stability at 4 °C with minor variations in pH; after 33 d, pH was higher than 6. However samples at 21 °C showed faster spoilage and pH dropped to 4 after 5 d. Growth of mesophilic bacteria was delayed in both milks after PEF processing, showing a 6- and 7-log cycles for SM and WM, respectively, after day 25 (4 °C); however, psychrophilic bacteria grew faster in both cases. PRACTICAL APPLICATION Pulsed electric fields (PEF) technology in the pasteurization of liquid food products has shown positive results. Processing times can be reduced considerably, which in turn reduces the loss of nutrients and offers important savings in energy. PEF has been used successfully to pasteurize some liquid foods, but it is still not used commercially in milk pasteurization, although several trials have shown the positive effects of PEF milk pasteurization, which could allow for its future use at the industrial level.


Journal of Food Protection | 2005

Inactivation of Pseudomonas fluorescens in skim milk by combinations of pulsed electric fields and organic acids

Juan J. Fernández-Molina; Bilge Altunakar; Daniela Bermúdez-Aguirre; Barry G. Swanson; Gustavo V. Barbosa-Cánovas

Pseudomonas fluorescens suspended in skim milk was inactivated by application of pulsed electric fields (PEF) either alone or in combination with acetic or propionic acid. The initial concentration of microorganisms ranged from 10(5) to 10(6) CFU/ml. Addition of acetic acid and propionic acid to skim milk inactivated 0.24 and 0.48 log CFU/ml P. fluorescens, respectively. Sets of 10, 20, and 30 pulses were applied to the skim milk using exponentially decaying pulses with pulse lengths of 2 micros and pulse frequencies of 3 Hz. Treatment temperature was maintained between 16 and 20 degrees C. In the absence of organic acids, PEF treatment of skim milk at field intensities of 31 and 38 kV/cm reduced P. fluorescens populations by 1.0 to 1.8 and by 1.2 to 1.9 log CFU/ml, respectively. Additions of acetic and propionic acid to the skim milk in a pH range of 5.0 to 5.3 and PEF treatment at 31, 33, and 34 kV/cm, and 36, 37, and 38 kV/cm reduced the population of P. fluorescens by 1.4 and 1.8 log CFU/ml, respectively. No synergistic effect resulted from the combination of PEF with acetic or propionic acid.


Journal of Food Science | 2010

Processing of soft Hispanic cheese ("queso fresco") using thermo-sonicated milk: a study of physicochemical characteristics and storage life.

Daniela Bermúdez-Aguirre; Gustavo V. Barbosa-Cánovas

Queso fresco is a handmade cheese consumed in Latin America and some regions of the United States. However, deficient milk processing has affected its microbial quality and it has an extremely short shelf life and low yield. The objective of this work was to process queso fresco using thermo-sonicated milk; physicochemical parameters were evaluated, including microbial quality during storage (4 °C). An ultrasonic processor (UP400S, 400 W, 24 kHz, 120 μm) was used to sonicate raw milk. Seven milk systems (500 mL each) were evaluated: 1 untreated, and 6 treated at 63 °C/30 min; 63 °C/10 min + sonication; 63 °C/30 min + sonication; 72 °C/15 s; 72 °C/15 s + sonication; and 72 °C/1 min + sonication. A conventional cheese-making process was followed for all systems. The effect of sonication on milk was quite noticeable. Curdling times were reduced considerably, cheese yield (20.6%) was almost doubled, and luminosity of cheese was increased (L*). Textural properties and microstructure images matched very well. Queso fresco processed at 63 °C/120 μm/30 min had the best quality. After storage for 23 d at 4 °C mesophilic count was just 4 log; psychrophilic count, 3.5 log; and enterobacteria count, 3 log. The pH and color remained almost constant and a minor degree of syneresis was observed at end of storage. Due to microstructural rearrangement of the milk components such as fat globules and casein micelles, cheese yield was doubled compared to the traditional handmade product. Shelf life was extended considerably and the product had higher quality.


Improving the safety and quality of milk. Volume 1: Milk production and processing | 2010

Pasteurization of milk with pulsed electric fields.

Gustavo V. Barbosa-Cánovas; Daniela Bermúdez-Aguirre

Abstract: Pulsed electric fields (PEF) is a novel and very promising technology for pasteurization of pumpable foods. The food enters the PEF chamber, flows between two electrodes, and undergoes pulsing by electric fields. Microorganisms present in the food are inactivated as a result. There are theories regarding the mechanism of this inactivation. One of the most studied theories is related to electroporation of cell membranes. PEF treatment times are very short (microseconds), and processing temperatures are near room temperature or below, the main reason why PEF is called a nonthermal technology. Due to PEF’s short processing times and low temperatures, foods keep their original sensorial and nutritional characteristics after processing. The effectiveness of PEF to inactivate bacteria and extend the shelf-life of food also ensures the microbiological quality of the final product. Energy savings using PEF are also important compared with conventional thermal treatment. This chapter presents the basic principles of PEF technology with special focus on its use in processing milk. Microbiological and enzymatic studies are mentioned as well. The advantages of this technology and current challenges and limitations are discussed throughout the chapter.


Archive | 2011

Power Ultrasound to Process Dairy Products

Daniela Bermúdez-Aguirre; Gustavo V. Barbosa-Cánovas

Conventional methods of pasteurizing milk involve the use of heat regardless of treatment (batch, high temperature short time – HTST or ultra high temperature – UHT sterilization), and the quality of the milk is affected because of the use of high temperatures. Consequences of thermal treatment are a decrease in nutritional properties through the destruction of vitamins or denaturation of proteins, and sometimes the flavor of milk is undesirably changed. These changes are produced at the same time that the goal of the pasteurization process is achieved, which is to have a microbiological safe product, free of pathogenic bacteria, and to reduce the load of deteriorative microorganisms and enzymes, resulting in a product with a longer storage life.

Collaboration


Dive into the Daniela Bermúdez-Aguirre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry G. Swanson

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Bilge Altunakar

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria G. Corradini

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Raymond Mawson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Abigail Moody

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Wemlinger

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge