Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Boehm is active.

Publication


Featured researches published by Daniela Boehm.


Applied and Environmental Microbiology | 2016

Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus

Lu Han; Sonal Patil; Daniela Boehm; Vladimir Milosavljević; P.J. Cullen; Paula Bourke

ABSTRACT Atmospheric cold plasma (ACP) is a promising nonthermal technology effective against a wide range of pathogenic microorganisms. Reactive oxygen species (ROS) play a crucial inactivation role when air or other oxygen-containing gases are used. With strong oxidative stress, cells can be damaged by lipid peroxidation, enzyme inactivation, and DNA cleavage. Identification of ROS and an understanding of their role are important for advancing ACP applications for a range of complex microbiological issues. In this study, the inactivation efficacy of in-package high-voltage (80 kV [root mean square]) ACP (HVACP) and the role of intracellular ROS were investigated. Two mechanisms of inactivation were observed in which reactive species were found to either react primarily with the cell envelope or damage intracellular components. Escherichia coli was inactivated mainly by cell leakage and low-level DNA damage. Conversely, Staphylococcus aureus was mainly inactivated by intracellular damage, with significantly higher levels of intracellular ROS observed and little envelope damage. However, for both bacteria studied, increasing treatment time had a positive effect on the intracellular ROS levels generated.


Scientific Reports | 2016

Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma

Daniela Boehm; Caitlin Heslin; P.J. Cullen; Paula Bourke

The exposure of aqueous solutions to atmospheric plasmas results in the generation of relatively long-lived secondary products such as hydrogen peroxide which are biologically active and have demonstrated anti-microbial and cytotoxic activity. The use of plasma-activated solutions in applications such as microbial decontamination or anti-cancer treatments requires not only adequate performance on target cells but also a safe operating window regarding the impact on surrounding tissues. Furthermore the generation of plasma-activated fluids needs to be considered as a by-stander effect of subjecting tissue to plasma discharges. Cytotoxicity and mutagenicity assays using mammalian cell lines were used to elucidate the effects of solutions treated with di-electric barrier discharge atmospheric cold plasma. Plasma-treated PBS inhibited cell growth in a treatment time-dependent manner showing a linear correlation to the solutions’ peroxide concentration which remained stable over several weeks. Plasma-treated foetal bovine serum (FBS) acting as a model for complex bio-fluids showed not only cytotoxic effects but also exhibited increased mutagenic potential as determined using the mammalian HPRT assay. Further studies are warranted to determine the nature, causes and effects of the cyto- and genotoxic potential of solutions exposed to plasma discharges to ensure long-term safety of novel plasma applications in medicine and healthcare.


PLOS ONE | 2015

Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors

Dana Ziuzina; Daniela Boehm; Sonal Patil; P.J. Cullen; Paula Bourke

The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated ‘inpack’ using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the inhibition of QS and mechanisms by which this may occur.


Frontiers in Microbiology | 2016

Controlling Microbial Safety Challenges of Meat Using High Voltage Atmospheric Cold Plasma

Lu Han; Dana Ziuzina; Caitlin Heslin; Daniela Boehm; Apurva Patange; David Sango; V.P. Valdramidis; P.J. Cullen; Paula Bourke

Atmospheric cold plasma (ACP) is a non-thermal technology, effective against a wide range of pathogenic microorganisms. Inactivation efficacy results from plasma generated reactive species. These may interact with any organic components in a test matrix including the target microorganism, thus food components may exert a protective effect against the antimicrobial mode of action. The effect of an in-package high voltage ACP process applied in conjunction with common meat processing MAP gas compositions as well as bacteria type and meat model media composition have been investigated to determine the applicability of this technology for decontamination of safety challenges associated with meat products. E. coli, L. monocytogenes, and S. aureus in PBS were undetectable after 60 s of treatment at 80 kVRMS in air, while ACP treatment of the contaminated meat model required post-treatment refrigeration to retain antimicrobial effect. The nutritive components in the meat model exerted a protective effect during treatment, where 300 s ACP exposure yielded a maximum reduction of 1.5 log using a high oxygen atmosphere, whilst using air and high nitrogen atmospheres yielded lower antimicrobial efficacy. Furthermore, an ROS assay was performed to understand the protective effects observed using the meat model. This revealed that nutritive components inhibited penetration of ROS into bacterial cells. This knowledge can assist the optimization of meat decontamination using ACP technology where interactions with all components of the food matrix require evaluation.


PLOS ONE | 2013

Caspase-3 Is Involved in the Signalling in Erythroid Differentiation by Targeting Late Progenitors

Daniela Boehm; Christelle Mazurier; Marie-Catherine Giarratana; Dhouha Darghouth; Anne-Marie Faussat; Laurence Harmand; Luc Douay

A role for caspase activation in erythroid differentiation has been established, yet its precise mode of action remains elusive. A drawback of all previous investigations on caspase activation in ex vivo erythroid differentiation is the lack of an in vitro model producing full enucleation of erythroid cells. Using a culture system which renders nearly 100% enucleated red cells from human CD34+ cells, we investigated the role of active caspase-3 in erythropoiesis. Profound effects of caspase-3 inhibition were found on erythroid cell growth and differentiation when inhibitors were added to CD34+ cells at the start of the culture and showed dose-response to the concentration of inhibitor employed. Enucleation was only reduced as a function of the reduced maturity of the culture and the increased cell death of mature cells while the majority of cells retained their ability to extrude their nuclei. Cell cycle analysis after caspase-3 inhibition showed caspase-3 to play a critical role in cell proliferation and highlighted a novel function of this protease in erythroid differentiation, i.e. its contribution to cell cycle regulation at the mitotic phase. While the effect of caspase-3 inhibitor treatment on CD34+ derived cells was not specific to the erythroid lineage, showing a similar reduction of cell expansion in myeloid cultures, the mechanism of action in both lineages appeared to be distinct with a strong induction of apoptosis causing the decreased yield of myeloid cells. Using a series of colony-forming assays we were able to pinpoint the stage at which cells were most sensitive to caspase-3 inhibition and found activated caspase-3 to play a signalling role in erythroid differentiation by targeting mature BFU-E and CFU-E but not early BFU-E.


Trends in Biotechnology | 2018

The Potential of Cold Plasma for Safe and Sustainable Food Production

Paula Bourke; Dana Ziuzina; Daniela Boehm; P.J. Cullen; Kevin M. Keener

Cold plasma science and technology is increasingly investigated for translation to a plethora of issues in the agriculture and food sectors. The diversity of the mechanisms of action of cold plasma, and the flexibility as a standalone technology or one that can integrate with other technologies, provide a rich resource for driving innovative solutions. The emerging understanding of the longer-term role of cold plasma reactive species and follow-on effects across a range of systems will suggest how cold plasma may be optimally applied to biological systems in the agricultural and food sectors. Here we present the current status, emerging issues, regulatory context, and opportunities of cold plasma with respect to the broad stages of primary and secondary food production.


Food Research International | 2018

Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing

Agata Los; Dana Ziuzina; Simen Akkermans; Daniela Boehm; P.J. Cullen; Jan Van Impe; Paula Bourke

Contamination of cereal grains as a key global food resource with insects or microorganisms is a persistent concern for the grain industry due to irreversible damage to quality and safety characteristics and economic losses. Atmospheric cold plasma presents an alternative to conventional grain decontamination methods owing to the high antimicrobial potential of reactive species generated during the treatment, but effects against product specific microflora are required to understand how to optimally develop this approach for grains. This work investigated the influence of ACP processing parameters for both cereal grain decontamination and grain quality as important criteria for grain or seed use. A high voltage (HV) (80 kV) dielectric barrier discharge (DBD) closed system was used to assess the potential for control of native microflora and pathogenic bacterial and fungal challenge microorganisms, in tandem with effects on grain functional properties. Response surface modelling of experimental data probed the key factors in relation to microbial control and seed germination promotion. The maximal reductions of barley background microbiota were 2.4 and 2.1 log10 CFU/g and of wheat - 1.5 and 2.5 log10 CFU/g for bacteria and fungi, respectively, which required direct treatment for 20 min followed by a 24 h sealed post-treatment retention time. In the case of challenge organisms inoculated on barley grains, the highest resistance was observed for Bacillus atrophaeus endospores, which, regardless of retention time, were maximally reduced by 2.4 log10 CFU/g after 20 min of direct treatment. The efficacy of the plasma treatment against selected microorganisms decreased in the following order: E. coli > P. verrucosum (spores) > B. atrophaeus (vegetative cells) > B. atrophaeus (endospores). The challenge microorganisms were more susceptible to ACP treatment than naturally present background microbiota. No major effect of short term plasma treatment on the retention of quality parameters was observed. Germination percentage measured after 7 days cultivation was similar for samples treated for up to 5 min, but this was decreased after 20 min of direct treatment. Overall, ACP proved effective for cereal grain decontamination, but it is noted that the diverse native micro-flora may pose greater resistance to the closed, surface decontamination approach than the individual fungal or bacterial challenges, which warrants investigation of grain microbiome responses to ACP.


Anti-cancer Agents in Medicinal Chemistry | 2017

Hydrogen Peroxide and Beyond-the Potential of High-voltage Plasma-activated Liquids Against Cancerous Cells

Daniela Boehm; James F. Curtin; P.J. Cullen; Paula Bourke

BACKGROUND The use of plasma-activated liquids such as PBS, medium or simply plasma-activated water (PAW) has been receiving increasing attention for applications in cancer treatments. Amongst the reactive species contained in these solutions, hydrogen peroxide appears to play a pivotal role in causing cytotoxic effects. H2O2 concentrations can be correlated with reduced cell viability and growth and used as an indicator of the potential efficacy of a plasma-activated liquid. OBJECTIVE To investigate the cytotoxic mediators generated in water specific to high-voltage DBD-ACP. METHOD Using a high-voltage dielectric barrier atmospheric cold plasma (DBD-ACP) system, we examined PAW-mediated cytotoxic effects on different mammalian cell lines employing a set-up where short-lived reactive species can be discounted and activated liquids with long-term stability are generated. RESULTS The PAW potency could be modulated using voltage level, treatment time and post-treatment storage time and target-related characteristics such as surface to volume ratio. All of these parameters effected cell viability in a hydrogen peroxide concentration correlated manner. The susceptibility of two cancer cell lines to PAW was similar to that observed for two non-cancer cell lines and the toxicity of plasma-activated water exceeded that of the corresponding hydrogen peroxide concentrations. CONCLUSION In cytotoxic plasma activated water an essential role for H2O2 has been demonstrated multi-fold, yet further contributing factors are apparent and remain to be identified.


Biotechnology Reports | 2014

Simply red: A novel spectrophotometric erythroid proliferation assay as a tool for erythropoiesis and erythrotoxicity studies

Daniela Boehm; Angus Bell

Most mammalian cell proliferation assays rely on manual or automated cell counting or the assessment of metabolic activity in colorimetric assays, with the former being either labor and time intensive or expensive and the latter being multistep procedures requiring the addition of several reagents. The proliferation of erythroid cells from hematopoietic stem cells and their differentiation into mature red blood cells is characterized by the accumulation of large amounts of hemoglobin. Hemoglobin concentrations are easily quantifiable using spectrophotometric methods due to the specific absorbance peak of the molecule’s heme moiety between 400 and 420 nm. Erythroid proliferation can therefore be readily assessed using spectrophotometric measurement in this range. We have used this feature of erythroid cells to develop a simple erythroid proliferation assay that is minimally labor/time- and reagent-intensive and could easily be automated for use in high-throughput screening. Such an assay can be a valuable tool for investigations into hematological disorders where erythropoiesis is dysregulated, i.e., either inhibited or enhanced, into the development of anemia as a side-effect of primary diseases such as parasitic infections and into cyto-(particularly erythro-) toxicity of chemical agents or drugs.


Stem Cells International | 2011

Human Fetal Liver: An In Vitro Model of Erythropoiesis

Guillaume Pourcher; Christelle Mazurier; Yé Yong King; Marie-Catherine Giarratana; Ladan Kobari; Daniela Boehm; Luc Douay; Hélène Lapillonne

We previously described the large-scale production of RBCs from hematopoietic stem cells (HSCs) of diverse sources. Our present efforts are focused to produce RBCs thanks to an unlimited source of stem cells. Human embryonic stem (ES) cells or induced pluripotent stem cell (iPS) are the natural candidates. Even if the proof of RBCs production from these sources has been done, their amplification ability is to date not sufficient for a transfusion application. In this work, our protocol of RBC production was applied to HSC isolated from fetal liver (FL) as an intermediate source between embryonic and adult stem cells. We studied the erythroid potential of FL-derived CD34+ cells. In this in vitro model, maturation that is enucleation reaches a lower level compared to adult sources as observed for embryonic or iP, but, interestingly, they (i) displayed a dramatic in vitro expansion (100-fold more when compared to CB CD34+) and (ii) 100% cloning efficiency in hematopoietic progenitor assays after 3 days of erythroid induction, as compared to 10–15% cloning efficiency for adult CD34+ cells. This work supports the idea that FL remains a model of study and is not a candidate for ex vivo RBCS production for blood transfusion as a direct source of stem cells but could be helpful to understand and enhance proliferation abilities for primitive cells such as ES cells or iPS.

Collaboration


Dive into the Daniela Boehm's collaboration.

Top Co-Authors

Avatar

Paula Bourke

Dublin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P.J. Cullen

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Dana Ziuzina

Dublin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lu Han

Dublin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sonal Patil

Dublin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peng Lu

Dublin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Agata Los

Dublin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Apurva Patange

Dublin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Caitlin Heslin

Dublin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Vladimir Milosavljević

Dublin Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge