Daniela Bressanin
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Bressanin.
Biochimica et Biophysica Acta | 2012
Alberto M. Martelli; Giovanna Tabellini; Daniela Bressanin; Andrea Ognibene; Kaoru Goto; Lucio Cocco; Camilla Evangelisti
Akt is a central player in the signal transduction pathways activated in response to many growth factors, hormones, cytokines, and nutrients and is thought to control a myriad of cellular functions including proliferation and survival, autophagy, metabolism, angiogenesis, motility, and exocytosis. Moreover, dysregulated Akt activity is being implicated in the pathogenesis of a growing number of disorders, including cancer. Evidence accumulated over the past 15 years has highlighted the presence of active Akt in the nucleus, where it acts as a fundamental component of key signaling pathways. For example, nuclear Akt counteracts apoptosis through a block of caspase-activated DNase: deoxyribonuclease and inhibition of chromatin condensation, and is also involved in cell cycle progression control, cell differentiation, mRNA: messenger RNA export, DNA repair, and tumorigenesis. In this review, we shall summarize the most relevant findings about nuclear Akt and its functions.
Leukemia | 2012
Carolina Simioni; Luca M. Neri; Giovanna Tabellini; Francesca Ricci; Daniela Bressanin; Francesca Chiarini; Cecilia Evangelisti; Alice Cani; P L Tazzari; Fraia Melchionda; Pasqualepaolo Pagliaro; Andrea Pession; James A. McCubrey; Silvano Capitani; A M Martelli
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder arising from T-cell progenitors. T-ALL accounts for 15% of newly diagnosed ALL cases in children and 25% in adults. Although the prognosis of T-ALL has improved, due to the use of polychemotherapy schemes, the outcome of relapsed/chemoresistant T-ALL cases is still poor. A signaling pathway that is frequently upregulated in T-ALL, is the phosphatidylinositol 3-kinase/Akt/mTOR network. To explore whether Akt could represent a target for therapeutic intervention in T-ALL, we evaluated the effects of the novel allosteric Akt inhibitor, MK-2206, on a panel of human T-ALL cell lines and primary cells from T-ALL patients. MK-2206 decreased T-ALL cell line viability by blocking leukemic cells in the G0/G1 phase of the cell cycle and inducing apoptosis. MK-2206 also induced autophagy, as demonstrated by an increase in the 14-kDa form of LC3A/B. Western blotting analysis documented a concentration-dependent dephosphorylation of Akt and its downstream targets, GSK-3α/β and FOXO3A, in response to MK-2206. MK-2206 was cytotoxic to primary T-ALL cells and induced apoptosis in a T-ALL patient cell subset (CD34+/CD4−/CD7−), which is enriched in leukemia-initiating cells. Taken together, our findings indicate that Akt inhibition may represent a potential therapeutic strategy in T-ALL.
Cell Cycle | 2012
Francesca Buontempo; Francesca Chiarini; Daniela Bressanin; Giovanna Tabellini; Fraia Melchionda; Andrea Pession; Milena Fini; Luca M. Neri; James A. McCubrey; Alberto M. Martelli
Several lines of evidence suggest that the IκB kinase (IKK)/nuclear factor-κB (NFκB) axis is required for viability of leukemic cells and is a predictor of relapse in T-cell acute lymphoblastic leukemia (T-ALL). Moreover, many anticancer agents induce NFκB nuclear translocation and activation of its target genes, which counteract cellular resistance to chemotherapeutic drugs. Therefore, the design and the study of IKK-specific drugs is crucial to inhibit tumor cell proliferation and to prevent cancer drug-resistance. Here, we report the anti-proliferative effects induced by BMS-345541 (a highly selective IKK inhibitor) in three Notch1-mutated T-ALL cell lines and in T-ALL primary cells from pediatric patients. BMS-345541 induced apoptosis and an accumulation of cells in the G2/M phase of the cell cycle via inhibition of IKK/NFκB signaling. We also report that T-ALL cells treated with BMS-345541 displayed nuclear translocation of FOXO3a and restoration of its functions, including control of p21Cip1 expression levels. We demonstrated that FOXO3a subcellular re-distribution is independent of AKT and ERK 1/2 signaling, speculating that in T-ALL the loss of FOXO3a tumor suppressor function could be due to deregulation of IKK, as has been previously demonstrated in other cancer types. It is well known that, differently from p53, FOXO3a mutations have not yet been found in human tumors, which makes therapeutics activating FOXO3a more appealing than others. For these features, BMS-345541 could be used alone or in combination with traditional therapies in the treatment of T-ALL.
Physiologia Plantarum | 2012
Patrizia Torrigiani; Daniela Bressanin; Karina B. Ruiz; Alice Tadiello; Livio Trainotti; Claudio Bonghi; Vanina Ziosi; Guglielmo Costa
Peach (Prunus persica var. laevis Gray) was chosen to unravel the molecular basis underlying the ability of spermidine (Sd) to influence fruit development and ripening. Field applications of 1 mM Sd on peach fruit at an early developmental stage, 41 days after full bloom (dAFB), i.e. at late stage S1, led to a slowing down of fruit ripening. At commercial harvest (125 dAFB, S4II) Sd-treated fruits showed a reduced ethylene production and flesh softening. The endogenous concentration of free and insoluble conjugated polyamines (PAs) increased (0.3-2.6-fold) 1 day after treatment (short-term response) butsoon it declined to control levels; starting from S3/S4, when soluble conjugated forms increased (up to five-fold relative to controls at ripening), PA levels became more abundant in treated fruits, (long-term response). Real-time reverse transcription-polymerase chain reaction analyses revealed that peaks in transcript levels of fruit developmental marker genes were shifted ahead in accord with a developmental slowing down. At ripening (S4I-S4II) the upregulation of the ethylene biosynthetic genes ACO1 and ACS1 was dramatically counteracted by Sd and this led to a strong downregulation of genes responsible for fruit softening, such as PG and PMEI. Auxin-related gene expression was also altered both in the short term (TRPB) and in the long term (GH3, TIR1 and PIN1), indicating that auxin plays different roles during development and ripening processes. Messenger RNA amounts of other hormone-related ripening-regulated genes, such as NCED and GA2-OX, were strongly downregulated at maturity. Results suggest that Sd interferes with fruit development/ripening by interacting with multiple hormonal pathways.
Expert Opinion on Therapeutic Targets | 2012
Alberto M. Martelli; Francesca Chiarini; Camilla Evangelisti; Andrea Ognibene; Daniela Bressanin; Anna Maria Billi; Lucia Manzoli; Alessandra Cappellini; James A. McCubrey
Introduction: Despite considerable advances, several hematological malignancies remain incurable with standard treatments. Therefore, there is a need for novel targeted and less toxic therapies, particularly for patients who develop resistance to traditional chemotherapeutic drugs. The liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling pathway has recently emerged as a tumor suppressor axis. A critical point is that the LKB1/AMPK network remains functional in a wide range of cancers and could be stimulated by drugs, such as N,N-dimethylimidodicarbonimidic diamide (metformin) or 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR). Areas covered: The literature data show that drugs activating LKB1/AMPK signaling induced cell cycle arrest, caspase-dependent apoptosis or autophagy in hematopoietic tumors. Moreover, metformin effectively inhibited mammalian target of rapamycin complex 1 (mTORC1)-controlled oncogenetic protein translation, which does not occur with allosteric mTORC1 inhibitors, such as rapamycin and its derivatives. Metformin was also capable of targeting leukemic stem cells, the most relevant target for leukemia eradication. Expert opinion: Data emerging from preclinical settings suggest that the LKB1/AMPK pathway is critically involved in regulating proliferation and survival of malignant hematopoietic cells. Thus, it is proposed that drugs activating the LKB1/AMPK axis may offer a novel and less toxic treatment option for some types of hematological malignancies.
Critical Reviews in Biochemistry and Molecular Biology | 2011
Alberto M. Martelli; Andrea Ognibene; Francesca Buontempo; Milena Fini; Daniela Bressanin; Kaoru Goto; James A. McCubrey; Lucio Cocco; Camilla Evangelisti
Since the late 1980s, a growing body of evidence has documented that phosphoinositides and their metabolizing enzymes, which regulate a large variety of cellular functions both in the cytoplasm and at the plasma membrane, are present also within the nucleus, where they are involved in processes such as cell proliferation, differentiation, and survival. Remarkably, nuclear phosphoinositide metabolism operates independently from that present elsewhere in the cell. Although nuclear phosphoinositides generate second messengers such as diacylglycerol and inositol 1,4,5 trisphosphate, it is becoming increasingly clear that they may act by themselves to influence chromatin structure, gene expression, DNA repair, and mRNA export. The understanding of the biological roles played by phosphoinositides is supported by the recent acquisitions demonstrating the presence in the nuclear compartment of several proteins harboring phosphoinositide-binding domains. Some of these proteins have functional roles in RNA splicing/processing and chromatin assembly. Moreover, recent evidence shows that nuclear phospholipase Cβ1 (a key phosphoinositide metabolizing enzyme) could somehow be involved in the myelodysplastic syndrome, i.e. a hematopoietic disorder that frequently evolves into an acute leukemia. This review aims to highlight the most significant and updated findings about phosphoinositide metabolism in the nucleus under both physiological and pathological conditions.
Advances in biological regulation | 2014
Alberto M. Martelli; Annalisa Lonetti; Francesca Buontempo; Francesca Ricci; Pier Luigi Tazzari; Camilla Evangelisti; Daniela Bressanin; Alessandra Cappellini; Ester Orsini; Francesca Chiarini
Leukemia initiating cells (LICs) represent a reservoir that is believed to drive relapse and resistance to chemotherapy in blood malignant disorders. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases and is prone to early relapse. Although the prognosis of T-ALL has improved especially in children due to the use of new intensified treatment protocols, the outcome of relapsed T-ALL cases is still poor. Putative LICs have been identified also in T-ALL. LICs are mostly quiescent and for this reason highly resistant to chemotherapy. Therefore, they evade treatment and give rise to disease relapse. At present great interest surrounds the development of targeted therapies against signaling networks aberrantly activated in LICs and important for their survival and drug-resistance. Both the Notch1 pathway and the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) network are involved in T-ALL LIC survival and drug-resistance and could be targeted by small molecules. Thus, Notch1 and PI3K/Akt/mTOR inhibitors are currently being developed for clinical use either as single agents or in combination with conventional chemotherapy for T-ALL patient treatment. In this review, we summarize the existing knowledge of the relevance of Notch1 and PI3K/Akt/mTOR signaling in T-ALL LICs and we examine the rationale for targeting these key signal transduction networks by means of selective pharmacological inhibitors.
Cell Cycle | 2014
Antonino Spartà; Daniela Bressanin; Francesca Chiarini; Annalisa Lonetti; Alessandra Cappellini; Cecilia Evangelisti; Camilla Evangelisti; Fraia Melchionda; Andrea Pession; Alice Bertaina; Franco Locatelli; James A. McCubrey; Alberto M. Martelli
Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome.
Journal of Bioscience and Bioengineering | 2010
Alessandra Stefan; Flavio Schwarz; Daniela Bressanin; Alejandro Hochkoeppler
Silencing of the lacZ gene in Escherichia coli was attempted by means of the expression of antisense RNAs (asRNAs) in vivo. A short fragment of lacZ was cloned into the pBAD expression vector, in reverse orientation, using the EcoRI and PstI restriction sites. This construct (pBAD-Zcal1) was used to transform E. coli cells, and the antisense transcription was induced simply by adding arabinose to the culture medium. We demonstrated that the Zcal1 asRNA effectively silenced lacZ using β-galactosidase activity determinations, SDS-PAGE, and Western blotting. Because the concentration of the lac mRNA was always high in cells that expressed Zcal1, we hypothesize that this antisense acts by inhibiting messenger translation. Similar analyses, performed with a series of site-specific Zcal1 mutants, showed that the Shine-Dalgarno sequence, which is conferred by the pBAD vector, is an essential requisite for silencing competence. Indeed, the presence of the intact Shine-Dalgarno sequence positively affects asRNA stability and, hence, silencing effectiveness. Our observations will contribute to the understanding of the main determinants of silencing as exerted by asRNAs as well as provide useful support for the design of robust and efficient prokaryotic gene silencers.
Expert Opinion on Therapeutic Targets | 2013
Camilla Evangelisti; Cecilia Evangelisti; Daniela Bressanin; Francesca Buontempo; Francesca Chiarini; Annalisa Lonetti; Marina Soncin; Antonino Spartà; James A. McCubrey; Alberto M. Martelli
Introduction: Despite continuous advances in our knowledge of the biology of acute myelogenous leukemia (AML), the prognosis of AML patients treated with standard chemotherapy is still poor, especially in the elderly. Therefore, there is a need for novel targeted and less toxic therapies, particularly for patients who develop resistance to traditional chemotherapeutic drugs. Constitutively active phosphatidylinositol 3-kinase (PI3K) signaling characterizes many types of tumors, including AML, where it negatively influences response to therapeutic treatments. Areas covered: The literature data showed that small inhibitor molecules targeting PI3K signaling induced cell cycle arrest, apoptosis and decreased drug-resistance in AML cells. PI3K inhibitors were also capable of targeting leukemic initiating cells (LICs), the most relevant target for leukemia eradication, whereas they tended to spare healthy hematopoietic stem cells. Expert opinion: Data emerging from pre-clinical settings suggest that the PI3K pathway is critically involved in regulating proliferation, survival and drug-resistance of AML cells. Therefore, we propose that novel drugs targeting this signaling pathway may offer a novel and less toxic treatment option for AML patients, most likely in combination with a lower dosage of traditional chemotherapeutic agents or other innovative therapeutic agents.