Daniela Caldeira Costa
Universidade Federal de Ouro Preto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Caldeira Costa.
Journal of Clinical Biochemistry and Nutrition | 2011
Joyce Ferreira da Costa Guerra; Cintia Lopes de Brito Magalhães; Daniela Caldeira Costa; Marcelo Eustáquio Silva; Maria Lúcia Pedrosa
Açai (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Because increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the development of diabetic complications and many health claims have been reported for açai, the present study was undertaken to evaluate the possible protective effects of açai on the production of reactive oxygen species by neutrophils and on the liver antioxidant defense system in control and streptozotocin-induced diabetic rats. Diet supplementation with 2% açai was found to increase mRNA levels for gamma-glutamylcysteine synthetase and glutathione peroxidase in liver tissue and to decrease reactive oxygen species production by neutrophils. Compared to control animals, diabetic rats exhibited lower levels of mRNA coding for Zn-superoxide dismutase, glutathione peroxidase and gamma-glutamylcysteine synthetase and higher levels of reactive oxygen species production by neutrophils, thiobarbituric acid-reactive substances and carbonyl proteins in hepatic tissues. Although açai supplementation was not effective in restore gene expression of antioxidant enzymes in diabetic rats, it showed a protective effect, decreasing thiobarbituric acid-reactive substances levels and increasing reduced glutathione content in the liver. These findings suggest that açai can modulate reactive oxygen species production by neutrophils and that it has a significant favorable effect on the liver antioxidant defense system under fisiological conditions of oxidative stress and partially revert deleterious effects of diabetes in the liver.
Nutrition Research | 2012
Melina Oliveira de Souza; Lorena Souza e Silva; Cintia Lopes de Brito Magalhães; Bianca Barros de Figueiredo; Daniela Caldeira Costa; Marcelo Eustáquio Silva; Maria Lúcia Pedrosa
Previous studies have demonstrated that the ingestion of açaí pulp can improve serum lipid profile in various animal models; therefore, we hypothesized that açaí pulp (Euterpe oleracea Mart.) may modulate the expression of the genes involved in cholesterol homeostasis in the liver and increase fecal excretion, thus reducing serum cholesterol. To test this hypothesis, we analyzed the expression of 7α-hydroxylase and ATP-binding cassette, subfamily G transporters (ABCG5 and ABCG8), which are genes involved with the secretion of cholesterol in the rat. We also evaluated the expression of sterol regulatory element-binding protein 2, 3-hydroxy-3-methylglutaryl CoA reductase, low-density lipoprotein receptor (LDL-R), and apolipoprotein B100, which are involved in cholesterol biosynthesis. Female Fischer rats were divided into 4 groups: the C group, which was fed a standard AIN-93 M diet; the CA group, which was fed a standard diet supplemented with 2% açaí pulp; the H group, which was fed a hypercholesterolemic diet (25% soy oil and 1% cholesterol); and the HA group, which was fed a hypercholesterolemic diet supplemented with 2% açaí pulp. At the end of the experimental period, the rats were euthanized, and their blood and livers were collected. The HA group exhibited a significant decrease in serum total cholesterol, low-density lipoprotein cholesterol, and atherogenic index and also had increased high-density lipoprotein cholesterol and cholesterol excretion in feces compared with the H group. In addition, the expression of the LDL-R, ABCG5, and ABCG8 genes was significantly increased by the presence of açaí pulp. These results suggest that açaí pulp promotes a hypocholesterolemic effect in a rat model of dietary-induced hypercholesterolemia through an increase in the expression of ATP-binding cassette, subfamily G transporters, and LDL-R genes.
Archives of Medical Research | 2013
Danielle de Lima Ávila; Glaucy Rodrigues de Araújo; Maísa Silva; Pedro Henrique de Amorim Miranda; Mirla Fiuza Diniz; Maria Lúcia Pedrosa; Marcelo Eustáquio Silva; Wanderson Geraldo de Lima; Daniela Caldeira Costa
BACKGROUND AND AIMS It is believed that oxidative stress plays a role in the pathogenesis of diabetes mellitus. Several strategies have been developed with the objective of minimizing diabetic complications. Among these, inhibitors of dipeptidyl peptidase-IV (DPP-IV), which act by blocking degradation of incretin hormones, glucagon-like peptide hormone (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), have been the focus of many studies. It is known that, among the effects of incretins, we highlight its insulinotropic and cytoprotective effects on pancreatic β-cells. The objective of this study was to evaluate the possible protective effects of treatment with vildagliptin, a DPP-IV inhibitor, in β-cells in an experimental model of type 1 diabetes induced by streptozotocin (STZ). METHODS Rats were treated for 4 weeks with vildagliptin at concentrations of 5 and 10 mg/kg. In order to observe the pancreatic damage and the possible protective effects of vildagliptin treatment, we measured stress markers TBARS and protein carbonyl, antioxidant enzymes SOD and catalase, and analyzed pancreatic histology. RESULTS The treatment was effective in modulating stress in pancreatic tissue, both by reducing levels of stress markers as well as by increasing activity of SOD and catalase. After analyzing the pancreatic histology, we found that vildagliptin was also able to preserve islets and pancreatic β-cells, especially at the concentration of 5 mg/kg. CONCLUSION Thus, our results suggest that vildagliptin ameliorates oxidative stress and pancreatic beta cell destruction in type 1 diabetic rats. However, to evaluate the real potential of this medication in type 1 diabetes, further studies are needed.
Diabetes & Metabolism | 2003
José Augusto Nogueira-Machado; Fc Lima e Silva; Lo Medina; Daniela Caldeira Costa; Míriam Martins Chaves
UNLABELLED SUMMARY-BACKGROUND: The present study investigates the hypothesis that cells from ill patients and from healthy subjects may have different reactivity under metabolic stimulation as a consequence of an disease-induced metabolic adaptation. METHODS Granulocytes either from healthy subjects or from type II-Non Insulin Dependent Diabetes Mellitus (NIDDM) patients were compared in their capacities to generate Reactive Oxygen Species (ROS). The ROS generation was comparatively determined in a chemiluminescence assay, luminol-dependent, after cell incubation in the presence of either cyclic AMP - elevating agents or Interleukin 10. In some experiments the cells were pretreated with H89 compound (a PKA inhibitor) or with diphenylene iodonium (DPI), a NADPH-oxidase inhibitor. RESULTS Our results showed an increased ROS generation in granulocytes from diabetic patients in absence of cyclic AMP-elevating agents or IL-10. In the presence of cyclic AMP-elevating agents was observed an inverse metabolic response in granulocytes from diabetic patients in comparison to cells from healthy subjects. The granulocytes were pre-incubated in the presence of cyclic AMP-elevating agents--amminophylline (AMF) or dibutyryl cyclic AMP (dbcAMP)--or interleukin 10 (IL-10). The AMF, dbcAMP and IL-10 inhibited ROS production by granulocytes from healthy subjects. By contrast, AMF and dbcAMP activated cells from diabetic patients while IL-10 had no effect. The inhibition of ROS induced by AMF, dbcAMP or IL-10 was promptly abolished by the pretreatment of the cells with either PKA H89 inhibitor or NADPH-oxidase inhibitor (DPI) in granulocytes from healthy subjects. In relation to the granulocytes from type 2 diabetics patients, the activation of ROS generation mediated by AMF and dbcAMP was fully abolished by NADPH-oxidase DPI-inhibitor, but not by PKA H89 inhibitor. CONCLUSIONS Our present results reinforce the hypothesis that cells from ill patients (type II diabetic) when compared to cells from healthy subjects have different reactivity under metabolic stimulation. ROS production by human granulocytes was modulated by cyclic AMP elevating agents and IL-10. The inhibition of the ROS production in cells from healthy subjects was PKA-dependent while the activation in granulocytes from patients was PKA-independent. This inverse metabolic response, in cells from patients, suggests the use of an alternative metabolic pathway PKA-independent, possible cAMP/Epac/PKB-dependent. The correlation between activation of ROS production in granulocytes from diabetic patients and pathogenesis of diabetes can be suggested, however, further and extensive studies are needed for demonstrating this suggestion.
Gerontology | 2007
Míriam Martins Chaves; Daniela Caldeira Costa; Cristina Costa Telhado Pereira; Thiago Rabelo Andrade; Bernardo Coelho Horta; José Augusto Nogueira-Machado
Background: It is generally agreed that elderly subjects undergo progressive deterioration of their immune responsiveness, which leads to an increased susceptibility to autoimmune processes, neoplasm and inflammation. Thus there is a general consensus that regulation of inflammation results from a balance between pro-inflammatory and anti-inflammatory pathways. Objective: The present study aimed to investigate the possible alterations of cyclic AMP/protein kinase A (cAMP/PKA) and p38 mitogen-activated protein kinase (p38 MAPK) pathway signaling (reactive oxygen species (ROS) generation) and inositol 1,4,5-triphosphate (InsP3) production by neutrophils during the aging process. Methods: Age-induced ROS generation and InsP3 production were studied in healthy subjects ranging in age from 20 to 80 years. The subjects were divided into six age groups: (I) 20–29, (II) 30–39, (III) 40–49, (IV) 50–59, (V) 60–69, and (VI) 70–80 years old. The effect of cAMP, H89 (inhibitor PKA), and PD169316 (inhibitor p38 MAPK) on ROS production was quantified in a luminol-dependent chemiluminescence assay (relative light units/min) and by InsP3 release (cpm). Results: Our results demonstrated a lack of dibutyryl cAMP inhibitory effects on ROS generation and InsP3 production by granulocytes from PKA-dependent 50-year-olds. However, the inhibitory effect of cAMP is restored in neutrophils after the age of 50 years when p38 MAPK signaling is inhibited. Conclusions: The present study may be important towards a better understanding of the high susceptibility to infections and age-related inflammatory and deregulation diseases. The alteration of cAMP/PKA and p38 MAPK signaling pathways enhances the inflammatory process.
Free Radical Research | 2012
Joamyr Victor Rossoni Júnior; Glaucy Rodrigues de Araújo; Bruno da Cruz Pádua; Cintia Lopes de Brito Magalhães; Míriam Martins Chaves; Maria Lúcia Pedrosa; Marcelo Eustáquio Silva; Daniela Caldeira Costa
Annatto (Bixa orellana L.) contains a mixture of orange-yellowish pigments due to the presence of various carotenoids that have antioxidant effect. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen and nitrogen species (ROS and RNS) as part of the bodys defence mechanisms to destroy invading pathogens. It is well known that the function of neutrophils is altered in diabetes; one of the major functional changes in neutrophils in diabetes is the increased generation of extracellular superoxide via the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system. The purpose of this study is to evaluate the production of ROS and nitric oxide (NO) as well as the expression of NADPH oxidase subunits, inducible nitric oxide (iNOS), superoxide dismutase (SOD) and catalase (CAT) in neutrophils from diabetic rats treated with annatto extract and β-carotene. Forty-eight female Fisher rats were distributed into six groups according to the treatment received. All animals were sacrificed 7 days after treatment, and the neutrophils were isolated using two gradients of different densities. The ROS and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Analyses of gene expression were performed using quantitative real time polymerase chain reaction (qRT-PCR). The results show that treatment with annatto extract and β-carotene was able to decrease ROS production and the mRNA levels of p22phox and p47phox and increase the mRNA levels of SOD and CAT in neutrophils from diabetic rats. These data suggest that annatto extract and β-carotene exerts antioxidant effect via inhibition of expression of the NADPH oxidase subunits and increase expression/activity of antioxidant enzymes.
Journal of Clinical Biochemistry and Nutrition | 2012
Glaucy Rodrigues de Araújo; Bruno da Cruz Pádua; Míriam Martins Chaves; Maria Lúcia Pedrosa; Marcelo Eustáquio Silva; Daniela Caldeira Costa
Annatto has been identified as carotenoids that have antioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the body’s defense mechanisms to destroy invading pathogens. Reactive oxygen species/reactive nitrogen species are excessively produced by active peripheral neutrophils, and may damage essential cellular components, which in turn can cause vascular complications in diabetes. The present study was undertaken to evaluate the possible protective effects of annatto on the reactive oxygen species and nitric oxide (NO) inhibition in neutrophils from alloxan-induced diabetic rats. Adult female rats were divided into six groups based on receiving either a standard diet with or without supplementation of annatto extract or beta carotene. All animals were sacrificed 30 days after treatment and the neutrophils were isolated using two gradients of different densities. The reactive oxygen species and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Our results show that neutrophils from diabetic animals produce significantly more reactive oxygen species and NO than their respective controls and that supplementation with beta carotene and annatto is able to modulate the production of these species. Annatto extract may have therapeutic potential for modulation of the balance reactive oxygen species/NO induced by diabetes.
Mechanisms of Ageing and Development | 2009
Míriam Martins Chaves; Daniela Caldeira Costa; Barbara Fonseca de Oliveira; Marcella Israel Rocha; José Augusto Nogueira-Machado
BACKGROUND There is a large increase in the number of elderly people in modern societies. This demographic phenomenon has been paralleled by an epidemic of chronic diseases and inflammatory processes usually associated with advanced age. OBJECTIVE We studied the role of protein kinase A (PKA), protein kinase B (Akt/PKB) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways in ROS produced by neutrophils induced by pro-interferon-gamma (IFN-gamma) or anti-inflammatory interleukin 10 (IL-10) cytokines age-related. METHODS The ROS generation was studied in healthy subjects in age ranging from 20 to 80 years old divided in five age groups: (20-39), (40-49), (50-59), (60-69) and (70-80) years old. ROS production was quantified in a luminol-dependent chemiluminescence assay and the results were expressed as relative light units/min). RESULTS ROS production in human neutrophil was activated by IFN-gamma in all the groups studied. This activation was down-regulated by IL-10. The inhibitory effect of IL-10 on 20-49 years old group was reversed by the pre-treatment with H89 (PKA inhibitor) but not with PD169316 (p38 MAPK inhibitor). This differential effect of IL-10 associated with age was not observed with the neutrophil pre-treatment with Akt/PKB or NADPH-oxidase inhibitor (DPI). Lack of IL-10 effect on ROS production was observed in older subjects (50-80 years old). The effect of IL-10 showed a significant inhibition of ROS production similar to those got with PD169316 alone as compared to that of p38 MAPK. CONCLUSION The results suggest that inhibitory effect of the ROS production mediated by IL-10 depends on PKA for the younger and the lack effect on the elderly is p38 MAPK dependent.
Diabetes & Metabolism | 2006
José Augusto Nogueira-Machado; Fc Lima e Silva; Ep Cunha; Calsolari; Daniela Caldeira Costa; Cs Perilo; Bc Horta; Idalina Ferreira; Míriam Martins Chaves
BACKGROUND Granulocytes from healthy subjects and from patients suffering from diabetes mellitus present differences in reactivity to stimulation with cyclic nucleotide-elevating agents. The production of reactive oxygen species (ROS) is inhibited in cells from non-diabetic subjects following such stimulation, but activated through a PKA-independent signaling pathway in granulocytes from type 1 and type 2 diabetic patients. The aim of the present study was to understand better the changes in signaling mechanisms induced by the disease. METHODS ROS production in granulocytes from healthy subjects and from type 1 and type 2 diabetic patients was measured using a luminol-dependent chemiluminescence assay. Granulocytes were stimulated by the addition of the cAMP-elevating agent dibutyryl cAMP. In some experiments, granulocytes were pre-treated with an inhibitor of PKA or Akt/PKB prior to cAMP stimulation. RESULTS Intracellular elevation of cAMP induced a PKA-dependent and Akt/PKB-independent inhibition of ROS production in granulocytes from healthy subjects, but a significant activation in cells from both type 1 and type 2 diabetic patients. Most significantly, activation of ROS generation in cells from diabetic patients was shown to be Akt/PKB-dependent and PKA-independent. CONCLUSIONS These results suggest that chronic hyperglycaemia could induce metabolic adaptation in cAMP-related signaling mechanisms. Epac (exchange protein directly activated by cAMP) is a novel cAMP receptor besides PKA involved in different signaling pathways. The cAMP-stimulated inverse ROS response in granulocytes from type 1 and type 2 diabetic patients may be due to a change in signaling pathways from cAMP/PKA to cAMP/Epac/Akt/PKB. These preliminary results require further studies in order to evaluate their consequences on innate immunity and pathogenesis of diabetes mellitus.
Environmental Pollution | 2016
Giselle Luciane Murta; Keila Karine Duarte Campos; Ana Carla Balthar Bandeira; Mirla Fiuza Diniz; Guilherme de Paula Costa; Daniela Caldeira Costa; André Talvani; Wanderson Geraldo de Lima; Frank Silva Bezerra
The formaldehyde (FA) is a crosslinking agent that reacts with cellular macromolecules such as proteins, nucleic acids and molecules with low molecular weight such as amino acids, and it has been linked to inflammatory processes and oxidative stress. This study aimed to analyze the oxidative effects on pulmonary inflammatory response in Fischer rats exposed to different concentrations of FA. Twenty-eight Fischer rats were divided into 4 groups (N = 7). The control group (CG) was exposed to ambient air and three groups were exposed to different concentrations of FA: 1% (FA1%), 5% (FA5%) and 10% (FA10%). In the Bronchoalveolar Lavage Fluid (BALF), the exposure to a concentration of 10% promoted the increase of inflammatory cells compared to CG. There was also an increase of macrophages and lymphocytes in FA10% and lymphocytes in FA5% compared to CG. The activity of NADPH oxidase in the blood had been higher in FA5% and FA10% compared to CG. The activity of superoxide dismutase enzyme (SOD) had an increase in FA5% and the activity of the catalase enzyme (CAT) showed an increase in FA1% compared to CG. As for the glutathione system, there was an increase in total glutathione (tGSH), reduced glutathione (GSH) and oxidized glutathione (GSSG) in FA5% compared to CG. The reduced/oxidized glutathione ratio (GSH/GSSG) had a decrease in FA5% compared to CG. There was an increase in lipid peroxidation compared to all groups and the protein carbonyl formation in FA10% compared to CG. We also observed an increase in CCL2 and CCL5 chemokines in the treatment groups compared to CG and in serum there was an increase in CCL2, CCL3 and CCL5 compared to CG. Our results point out to the potential of formaldehyde in promoting airway injury by increasing the inflammatory process as well as by the redox imbalance.