Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Catanzaro is active.

Publication


Featured researches published by Daniela Catanzaro.


Human Molecular Genetics | 2012

Isoleucyl-tRNA synthetase levels modulate the penetrance of a homoplasmic m.4277T>C mitochondrial tRNA Ile mutation causing hypertrophic cardiomyopathy

Elena Perli; Carla Giordano; Helen A. Tuppen; Monica Montopoli; Arianna Montanari; Maurizia Orlandi; Annalinda Pisano; Daniela Catanzaro; Laura Caparrotta; Beatrice Musumeci; Camillo Autore; Veronica Morea; Patrizio Di Micco; Antonio Francesco Campese; Martina Leopizzi; Pietro Gallo; Silvia Francisci; Laura Frontali; Robert W. Taylor; Giulia d'Amati

The genetic and epigenetic factors underlying the variable penetrance of homoplasmic mitochondrial DNA mutations are poorly understood. We investigated a 16-year-old patient with hypertrophic cardiomyopathy harboring a homoplasmic m.4277T>C mutation in the mt-tRNA(Ile) (MTTI) gene. Skeletal muscle showed multiple respiratory chain enzyme abnormalities and a decreased steady-state level of the mutated mt-tRNA(Ile). Transmitochondrial cybrids grown on galactose medium demonstrated a functional effect of this mutation on cell viability, confirming pathogenicity. These findings were reproduced in transmitochondrial cybrids, harboring a previously described homoplasmic m.4300A>G MTTI mutation. The pathogenic role of the m.4277T>C mutation may be ascribed to misfolding of the mt-tRNA molecule, as demonstrated by the altered electrophoretic migration of the mutated mt-tRNA. Indeed, structure and sequence analyses suggest that thymidine at position 4277 of mt-tRNA(Ile) is involved in a conserved tertiary interaction with thymidine at position 4306. Interestingly, the mutation showed variable penetrance within family members, with skeletal muscle from the patients clinically unaffected mother demonstrating normal muscle respiratory chain activities and steady-state levels of mt-tRNA(Ile), while homoplasmic for the m.4277T>C mutation. Analysis of mitochondrial isoleucyl-tRNA synthetase revealed significantly higher expression levels in skeletal muscle and fibroblasts of the unaffected mother when compared with the proband, while the transient over-expression of the IARS2 gene in patient transmitochondrial cybrids improved cell viability. This is the first observation that constitutively high levels of aminoacyl-tRNA synthetases (aaRSs) in human tissues prevent the phenotypic expression of a homoplasmic mt-tRNA point mutation. These findings extend previous observations on aaRSs therapeutic effects in yeast and human.


PLOS ONE | 2015

Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage.

Daniela Catanzaro; Serena Rancan; Genny Orso; Stefano Dall’Acqua; Paola Brun; Maria Cecilia Giron; Maria Carrara; Ignazio Castagliuolo; Eugenio Ragazzi; Laura Caparrotta; Monica Montopoli

Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA), were tested at 0.1-10 μg/ml and 0.027μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the pharmacological mechanisms mediated by BSE, in protecting intestinal epithelial barrier from inflammatory damage and supports its use as safe adjuvant in patients affected by IBD.


Oncotarget | 2015

Inhibition of glucose-6-phosphate dehydrogenase sensitizes cisplatin-resistant cells to death

Daniela Catanzaro; Edoardo Gaude; Genny Orso; Carla Giordano; Giulia Guzzo; Andrea Rasola; Eugenio Ragazzi; Laura Caparrotta; Christian Frezza; Monica Montopoli

The mechanisms of cisplatin resistance, one of the major limitations of current chemotherapy, has only partially been described. We previously demonstrated that cisplatin-resistant ovarian cancer cells (C13), are characterized by reduced mitochondrial activity and higher glucose-dependency when compared to the cisplatin-sensitive counterpart (2008). In this work we further characterized the role of metabolic transformation in cisplatin resistance. By using transmitochondrial hybrids we show that metabolic reprogramming of cisplatin-resistant cell is not caused by inherent mtDNA mutations. We also found that C13 cells not only present an increased glucose-uptake and consumption, but also exhibit increased expression and enzymatic activity of the Pentose Phosphate pathway (PPP) enzyme Glucose-6-Phosphate Dehydrogenase (G6PDH). Moreover, we show that cisplatin-resistant cells are more sensitive to G6PDH inhibition. Even if the metabolomic fingerprint of ovarian cancer cells remains to be further elucidated, these findings indicate that PPP offers innovative potential targets to overcome cisplatin resistance.


Fitoterapia | 2016

Protective effects of ψ taraxasterol 3-O-myristate and arnidiol 3-O-myristate isolated from Calendula officinalis on epithelial intestinal barrier

Stefano Dall'Acqua; Daniela Catanzaro; Veronica Cocetta; Nadine Igl; Eugenio Ragazzi; Maria Cecilia Giron; Laura Cecconello; Monica Montopoli

The triterpene esters ᴪ taraxasterol-3-O-myristate (1) and arnidiol-3-O-myristate (2) were tested for their ability to protect epithelial intestinal barrier in an in vitro model. Their effects on ROS production and on trans-epithelial resistance were investigated on CaCo-2 cell monolayers both in basal and stress-induced conditions. Both compounds were able to modulate the stress damage induced by H2O2 and INFγ+TNFα, showing a potential use as model compounds for the study of new therapeutic agents for intestinal inflammations.


Oncotarget | 2018

Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells

Daniela Catanzaro; Silvia Nicolosi; Veronica Cocetta; Marika Salvalaio; Andrea Pagetta; Eugenio Ragazzi; Monica Montopoli; Gianfranco Pasut

Ovarian cancer is an aggressive and lethal cancer usually treated by cytoreductive surgery followed by chemotherapy. Unfortunately, after an initial response, many patients relapse owing mainly to the development of resistance against the standard chemotherapy regime, carboplatin/paclitaxel, which is also affected by heavy side effects. In view to addressing such issues here, an association of liposomal cisplatin with 6-amino nicotinamide is investigated. It is known that resistant cells increase their demand for glucose, which is partially redirected toward the pentose phosphate pathway (PPP). Interestingly, we have found that also a cisplatin-resistant subclone of the ovarian cancer cells IGROV1 switch their metabolism toward the glycolytic pathway and rely on PPP to elude cisplatin cytotoxicity. The drug 6-amino nicotinamide, an inhibitor of the enzyme glucose-6-phosphate dehydrogenase (the rate-limiting step of the PPP) can restore the sensitivity of resistant cells to cisplatin. Then, to reduce the toxicity of cisplatin and prolong its action, a lyophilized stealth liposomal formulation of cisplatin was developed. The combination treatment of liposomal cisplatin and 6-amino nicotinamide showed promising cytotoxic activities in drug-resistant cells and a prolonged pharmacokinetics in rats, thus opening the way for a new therapeutic option against ovarian cancer.


Recent Patents on Food, Nutrition & Agriculture | 2018

A fixed combination of probiotics and herbal extracts attenuates intestinal barrier dysfunction from inflammatory stress in an in vitro model using Caco-2 cells.

Veronica Cocetta; Daniela Catanzaro; Vittoria Borgonetti; Eugenio Ragazzi; Maria Cecilia Giron; Paolo Governa; Ilaria Carnevali; Marco Biagi; Monica Montopoli

BACKGROUND Inflammatory Bowel Diseases (IBD), are considered a growing global disease, with about ten million people being affected worldwide. Maintenance of intestinal barrier integrity is crucial for preventing IBD onset and exacerbations. Some recent patents regarding oily formulations containing probiotics (WO2010122107A1 and WO2010103374A9) and the use of probiotics for gastrointestinal complaints (US20110110905A1 and US9057112B2) exist, or are pending application. OBJECTIVE In this work, we studied the effect of a fixed combination of registered Lactobacillus reuteri and Lactobacillus acidophilus strains and herbal extracts in an in vitro inflammation experimental model. METHODS Caco-2 cell monolayer was exposed to INF-γ+TNF-α or to LPS; Trans Epithelial Electrical Resistance (TEER) and paracellular permeability were investigated. ZO-1 and occludin Tight Junctions (TJs) were also investigated by mean of immunofluorescence. RESULTS Pre-treatment with the fixed combination of probiotics and herbal extracts prevented the inflammation-induced TEER decrease, paracellular permeability increase and TJs translocation. CONCLUSIONS In summary, the fixed combination of probiotics and herbal extracts investigated in this research was found to be an interesting candidate for targeting the re-establishment of intestinal barrier function in IBD conditions.


Fitoterapia | 2018

Silybin counteracts doxorubicin resistance by inhibiting GLUT1 expression

Daniela Catanzaro; Daniela Gabbia; Veronica Cocetta; Marco Biagi; Eugenio Ragazzi; Monica Montopoli; Maria Carrara

Despite significant advances in the diagnosis and treatment of cancer, the development of drug resistance still remains one of the principal causes that hampers the effectiveness of the therapy. Emerging evidences support the idea that the dysregulated metabolism could be related to drug resistance. The major goal of this study was to target cancer metabolic pathways using new pharmacological approaches coming from natural sources in order to possibly prevent or overcome this phenomenon. Firstly, the metabolic profile of human colorectal adenocarcinoma cells sensitive (LoVo WT) and resistant to doxorubicin (LoVo DOX) was delineated demonstrating that resistant cells remodel their metabolism toward a glycolytic phenotype. In particular it was observed that doxorubicin-resistant cancer cells exhibit an increased dependency from glucose for their survival, associated with overexpression of the glycolytic pathway. Moreover, both GLUT1 mRNA and protein expression significantly increased in LoVo DOX cells. Given the results about the metabolic profile, silybin, modulator of GLUTs, was selected as potential candidate to overcome doxorubicin resistance and, intriguingly, data revealed not only that silybin is more active in resistant cells than in wild type cells, but also that the combined treatment with doxorubicin and silybin presents a synergistic effect in LoVo DOX cells. Although many unanswered questions still remain about the molecular mechanism of silybin, these data suggest that targeting GLUTs may be a good strategy to restore doxorubicin sensitivity and elude drug resistance.


Archive | 2017

A Fixed Combination of Probiotics and Herbal Extracts Attenuates Intestinal Barrier Dysfunction from Inflammatory Stress

Veronica Cocetta; Daniela Catanzaro; Vittoria Borgonetti; Eugenio Ragazzi; Maria Cecilia Giron; Paolo Governa; Ilaria Carnevali; Marco Biagi; Monica Montopoli

Maintenance of intestinal barrier integrity is crucial for preventing inflammatory bowel 15 diseases (IBDs) onset and exacerbations. In this work we study the effect of a fixed combination of 16 Lactobacillus reuteri and Lactobacillus acidophilus and herbal extracts in an in vitro inflammation 17 experimental model. Caco-2 cell monolayer was exposed to INF-γ+TNF-α or to LPS; Trans Epithelial 18 Electrical Resistance (TEER) and paracellular permeability were investigated. ZO-1 and occludin 19 tight junctions (TJs) were also investigated by mean of immunofluorescence. The pre-treatment with 20 the fixed combination of probiotics and herbal extracts prevented the inflammation-induced TEER 21 decrease, paracellular permeability increase and TJs translocation. In summary the fixed 22 combination of probiotics and herbal extracts investigated in this research was found to be an 23 interesting candidate for targeting the re-establishment of intestinal barrier function in IBDs 24 conditions. 25


Natural Product Communications | 2015

Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines.

Daniela Catanzaro; Eugenio Ragazzi; Caterina Vianello; Laura Caparrotta; Monica Montopoli


Natural Product Communications | 2014

Cell cycle control by natural phenols in cisplatin-resistant cell lines.

Daniela Catanzaro; Caterina Vianello; Eugenio Ragazzi; Laura Caparrotta; Monica Montopoli

Collaboration


Dive into the Daniela Catanzaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Giordano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge