Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Cesselli is active.

Publication


Featured researches published by Daniela Cesselli.


Diabetes | 2001

Hyperglycemia Activates p53 and p53-Regulated Genes Leading to Myocyte Cell Death

Fabio Fiordaliso; Annarosa Leri; Daniela Cesselli; Federica Limana; Bijan Safai; Bernardo Nadal-Ginard; Piero Anversa; Jan Kajstura

To determine whether enzymatic p53 glycosylation leads to angiotensin II formation followed by p53 phosphorylation, prolonged activation of the renin-angiotensin system, and apoptosis, ventricular myocytes were exposed to levels of glucose mimicking diabetic hyperglycemia. At a high glucose concentration, O-glycosylation of p53 occurred between 10 and 20 min, reached its peak at 1 h, and then decreased with time. Angiotensin II synthesis increased at 45 min and 1 h, resulting in p38 mitogen-activated protein (MAP) kinase-driven p53 phosphorylation at Ser 390. p53 phosphorylation was absent at the early time points, becoming evident at 1 h, and increasing progressively from 3 h to 4 days. Phosphorylated p53 at Ser 18 and activated c-Jun NH(2)-terminal kinases were identified with hyperglycemia, whereas extracellular signal-regulated kinase was not phosphorylated. Upregulation of p53 was associated with an accumulation of angiotensinogen and AT(1) and enhanced production of angiotensin II. Bax quantity also increased. These multiple adaptations paralleled the concentrations of glucose in the medium and the duration of the culture. Myocyte death by apoptosis directly correlated with glucose and angiotensin II levels. Inhibition of O-glycosylation prevented the initial synthesis of angiotensin II, p53, and p38-MAP kinase (MAPK) phosphorylation and apoptosis. AT(1) blockade had no influence on O-glycosylation of p53, but it interfered with p53 phosphorylation; losartan also prevented phosphorylation of p38-MAPK by angiotensin II. Inhibition of p38-MAPK mimicked at a more distal level the consequences of losartan. In conclusion, these in vitro results support the notion that hyperglycemia with diabetes promotes myocyte apoptosis mediated by activation of p53 and effector responses involving the local renin-angiotensin system.


Circulation Research | 2010

Myocyte Turnover in the Aging Human Heart

Jan Kajstura; Narasimman Gurusamy; Barbara Ogorek; Polina Goichberg; Carlos Clavo-Rondon; Toru Hosoda; Domenico D'Amario; Silvana Bardelli; Antonio Paolo Beltrami; Daniela Cesselli; Rossana Bussani; Federica del Monte; Federico Quaini; Marcello Rota; Carlo Alberto Beltrami; Bruce A. Buchholz; Annarosa Leri; Piero Anversa

Rationale: The turnover of cardiomyocytes in the aging female and male heart is currently unknown, emphasizing the need to define human myocardial biology. Objective: The effects of age and gender on the magnitude of myocyte regeneration and the origin of newly formed cardiomyocytes were determined. Methods and Results: The interaction of myocyte replacement, cellular senescence, growth inhibition, and apoptosis was measured in normal female (n=32) and male (n=42) human hearts collected from patients 19 to 104 years of age who died from causes other than cardiovascular diseases. A progressive loss of telomeric DNA in human cardiac stem cells (hCSCs) occurs with aging and the newly formed cardiomyocytes inherit short telomeres and rapidly reach the senescent phenotype. Our data provide novel information on the superior ability of the female heart to sustain the multiple variables associated with the development of the senescent myopathy. At all ages, the female heart is equipped with a larger pool of functionally competent hCSCs and younger myocytes than the male myocardium. The replicative potential is higher and telomeres are longer in female hCSCs than in male hCSCs. In the female heart, myocyte turnover occurs at a rate of 10%, 14%, and 40% per year at 20, 60, and 100 years of age, respectively. Corresponding values in the male heart are 7%, 12%, and 32% per year, documenting that cardiomyogenesis involves a large and progressively increasing number of parenchymal cells with aging. From 20 to 100 years of age, the myocyte compartment is replaced 15 times in women and 11 times in men. Conclusions: The human heart is a highly dynamic organ regulated by a pool of resident hCSCs that modulate cardiac homeostasis and condition organ aging.


Circulation Research | 2011

Transplantation of Human Pericyte Progenitor Cells Improves the Repair of Infarcted Heart Through Activation of an Angiogenic Program Involving Micro-RNA-132

Rajesh Katare; Federica Riu; Kathryn Mitchell; Miriam Gubernator; Paola Campagnolo; Yuxin Cui; Orazio Fortunato; Elisa Avolio; Daniela Cesselli; Antonio Paolo Beltrami; Gianni D. Angelini; Costanza Emanueli; Paolo Madeddu

Rationale: Pericytes are key regulators of vascular maturation, but their value for cardiac repair remains unknown. Objective: We investigated the therapeutic activity and mechanistic targets of saphenous vein-derived pericyte progenitor cells (SVPs) in a mouse myocardial infarction (MI) model. Methods and Results: SVPs have a low immunogenic profile and are resistant to hypoxia/starvation (H/S). Transplantation of SVPs into the peri-infarct zone of immunodeficient CD1/Foxn-1nu/nu or immunocompetent CD1 mice attenuated left ventricular dilatation and improved ejection fraction compared to vehicle. Moreover, SVPs reduced myocardial scar, cardiomyocyte apoptosis and interstitial fibrosis, improved myocardial blood flow and neovascularization, and attenuated vascular permeability. SVPs secrete vascular endothelial growth factor A, angiopoietin-1, and chemokines and induce an endogenous angiocrine response by the host, through recruitment of vascular endothelial growth factor B expressing monocytes. The association of donor- and recipient-derived stimuli activates the proangiogenic and prosurvival Akt/eNOS/Bcl-2 signaling pathway. Moreover, microRNA-132 (miR-132) was constitutively expressed and secreted by SVPs and remarkably upregulated, together with its transcriptional activator cyclic AMP response element-binding protein, on stimulation by H/S or vascular endothelial growth factor B. We next investigated if SVP-secreted miR-132 acts as a paracrine activator of cardiac healing. In vitro studies showed that SVP conditioned medium stimulates endothelial tube formation and reduces myofibroblast differentiation, through inhibition of Ras-GTPase activating protein and methyl-CpG-binding protein 2, which are validated miR-132 targets. Furthermore, miR-132 inhibition by antimiR-132 decreased SVP capacity to improve contractility, reparative angiogenesis, and interstitial fibrosis in infarcted hearts. Conclusion: SVP transplantation produces long-term improvement of cardiac function through a novel paracrine mechanism involving the secretion of miR-132 and inhibition of its target genes.


Circulation | 2010

Human Adult Vena Saphena Contains Perivascular Progenitor Cells Endowed With Clonogenic and Proangiogenic Potential

Paola Campagnolo; Daniela Cesselli; Ayman Al Haj Zen; Antonio Paolo Beltrami; Nicolle Kränkel; Rajesh Katare; Gianni D. Angelini; Costanza Emanueli; Paolo Madeddu

Background— Clinical trials in ischemic patients showed the safety and benefit of autologous bone marrow progenitor cell transplantation. Non–bone marrow progenitor cells with proangiogenic capacities have been described, yet they remain clinically unexploited owing to their scarcity, difficulty of access, and low ex vivo expansibility. We investigated the presence, antigenic profile, expansion capacity, and proangiogenic potential of progenitor cells from the saphenous vein of patients undergoing coronary artery bypass surgery. Methods and Results— CD34-positive cells, negative for the endothelial marker von Willebrand factor, were localized around adventitial vasa vasorum. After dissection of the vein from surrounding tissues and enzymatic digestion, CD34-positive/CD31-negative cells were isolated by selective culture, immunomagnetic beads, or fluorescence-assisted cell sorting. In the presence of serum, CD34-positive/CD31-negative cells gave rise to a highly proliferative population that expressed pericyte/mesenchymal antigens together with the stem cell marker Sox2 and showed clonogenic and multilineage differentiation capacities. We called this population “saphenous vein–derived progenitor cells” (SVPs). In culture, SVPs integrated into networks formed by endothelial cells and supported angiogenesis through paracrine mechanisms. Reciprocally, endothelial cell–released factors facilitated SVP migration. These interactive responses were inhibited by Tie-2 or platelet-derived growth factor-BB blockade. Intramuscular injection of SVPs in ischemic limbs of immunodeficient mice improved neovascularization and blood flow recovery. At 14 days after transplantation, proliferating SVPs were still detectable in the recipient muscles, where they established N-cadherin–mediated physical contact with the capillary endothelium. Conclusions— SVPs generated from human vein CD34-positive/CD31-negative progenitor cells might represent a new therapeutic tool for angiogenic therapy in ischemic patients.


American Journal of Pathology | 2011

Effects of Age and Heart Failure on Human Cardiac Stem Cell Function

Daniela Cesselli; Antonio Paolo Beltrami; Federica D'Aurizio; Patrizia Marcon; Natascha Bergamin; Barbara Toffoletto; Maura Pandolfi; Elisa Puppato; Laura Marino; Sergio Signore; Ugolino Livi; Roberto Verardo; Silvano Piazza; Luigi Marchionni; Claudia Fiorini; Claudio Schneider; Toru Hosoda; Marcello Rota; Jan Kajstura; Piero Anversa; Carlo Alberto Beltrami; Annarosa Leri

Currently, it is unknown whether defects in stem cell growth and differentiation contribute to myocardial aging and chronic heart failure (CHF), and whether a compartment of functional human cardiac stem cells (hCSCs) persists in the decompensated heart. To determine whether aging and CHF are critical determinants of the loss in growth reserve of the heart, the properties of hCSCs were evaluated in 18 control and 23 explanted hearts. Age and CHF showed a progressive decrease in functionally competent hCSCs. Chronological age was a major predictor of five biomarkers of hCSC senescence: telomeric shortening, attenuated telomerase activity, telomere dysfunction-induced foci, and p21(Cip1) and p16(INK4a) expression. CHF had similar consequences for hCSCs, suggesting that defects in the balance between cardiomyocyte mass and the pool of nonsenescent hCSCs may condition the evolution of the decompensated myopathy. A correlation was found previously between telomere length in circulating bone marrow cells and cardiovascular diseases, but that analysis was restricted to average telomere length in a cell population, neglecting the fact that telomere attrition does not occur uniformly in all cells. The present study provides the first demonstration that dysfunctional telomeres in hCSCs are biomarkers of aging and heart failure. The biomarkers of cellular senescence identified here can be used to define the birth date of hCSCs and to sort young cells with potential therapeutic efficacy.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells

Marta Biagioli; Milena Pinto; Daniela Cesselli; Marta Zaninello; Dejan Lazarevic; Paola Roncaglia; Roberto Simone; Christina Vlachouli; Charles Plessy; Nicolas Bertin; Antonio Paolo Beltrami; Kazuto Kobayashi; Vittorio Gallo; Claudio Santoro; Isidro Ferrer; Stefano Rivella; Carlo Alberto Beltrami; Piero Carninci; Stefano Gustincich

The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the substantia nigra (SN) (A9 neurons) and the ventral tegmental area (VTA) (A10 cells). A9 neurons form the nigrostriatal pathway and are involved in regulating voluntary movements and postural reflexes. Their selective degeneration leads to Parkinsons disease. Here, we report that gene expression analysis of A9 dopaminergic neurons (DA) identifies transcripts for α- and β-chains of hemoglobin (Hb). Globin immunoreactivity decorates the majority of A9 DA, a subpopulation of cortical and hippocampal astrocytes and mature oligodendrocytes. This pattern of expression was confirmed in different mouse strains and in rat and human. We show that Hb is expressed in the SN of human postmortem brain. By microarray analysis of dopaminergic cell lines overexpressing α- and β-globin chains, changes in genes involved in O2 homeostasis and oxidative phopshorylation were observed, linking Hb expression to mitochondrial function. Our data suggest that the most famed oxygen-carrying globin is not exclusively restricted to the blood, but it may play a role in the normal physiology of the brain and neurodegenerative diseases.


Circulation Research | 2009

Multipotent Progenitor Cells Are Present in Human Peripheral Blood

Daniela Cesselli; Antonio Paolo Beltrami; Silvia Rigo; Natascha Bergamin; Federica D'Aurizio; Roberto Verardo; Silvano Piazza; Enio Klaric; Renato Fanin; Barbara Toffoletto; Stefania Marzinotto; Laura Mariuzzi; Nicoletta Finato; Maura Pandolfi; Annarosa Leri; Claudio Schneider; Carlo Alberto Beltrami; Piero Anversa

To determine whether the peripheral blood in humans contains a population of multipotent progenitor cells (MPCs), products of leukapheresis were obtained from healthy donor volunteers following the administration of granulocyte colony-stimulating factor. Small clusters of adherent proliferating cells were collected, and these cells continued to divide up to 40 population doublings without reaching replicative senescence and growth arrest. MPCs were positive for the transcription factors Nanog, Oct3/4, Sox2, c-Myc, and Klf4 and expressed several antigens characteristic of mesenchymal stem cells. However, they were negative for markers of hematopoietic stem/progenitor cells and bone marrow cell lineages. MPCs had a cloning efficiency of ≈3%, and following their expansion, retained a highly immature phenotype. Under permissive culture conditions, MPCs differentiated into neurons, glial cells, hepatocytes, cardiomyocytes, endothelial cells, and osteoblasts. Moreover, the gene expression profile of MPCs partially overlapped with that of neural and embryonic stem cells, further demonstrating their primitive, uncommitted phenotype. Following subcutaneous transplantation in nonimmunosuppressed mice, MPCs migrated to distant organs and integrated structurally and functionally within the new tissue, acquiring the identity of resident parenchymal cells. In conclusion, undifferentiated cells with properties of embryonic stem cells can be isolated and expanded from human peripheral blood after granulocyte colony-stimulating factor administration. This cell pool may constitute a unique source of autologous cells with critical clinical import.


Circulation Research | 2011

Intravenous Gene Therapy With Pim-1 Via a Cardiotropic Viral Vector Halts the Progression of Diabetic Cardiomyopathy Through Promotion of Prosurvival Signaling

Rajesh Katare; Andrea Caporali; Lorena Zentilin; Elisa Avolio; Graciela B. Sala-Newby; Atsuhiko Oikawa; Daniela Cesselli; Antonio Paolo Beltrami; Mauro Giacca; Costanza Emanueli; Paolo Madeddu

Rationale: Studies in transgenic mice showed the key role of (Pim-1) (proviral integration site for Moloney murine leukemia virus-1) in the control of cardiomyocyte function and viability. Objective: We investigated whether Pim-1 represents a novel mechanistic target for the cure of diabetic cardiomyopathy, a steadily increasing cause of nonischemic heart failure. Methods and Results: In streptozotocin-induced type 1 diabetic mice, Pim-1 protein levels declined during progression of cardiomyopathy, along with upregulation of Pim-1 inhibitors, protein phosphatase 2A, and microRNA-1. Moreover, diabetic hearts showed low levels of antiapoptotic B-cell lymphoma-2 (Bcl-2) protein and increased proapoptotic caspase-3 activity. Studies on adult rat cardiomyocytes and murine cardiac progenitor cells challenged with high glucose confirmed the in vivo expressional changes. In rescue studies, anti-microRNA-1 boosted Pim-1 and Bcl-2 expression and promoted cardiomyocyte and cardiac progenitor cell survival under high glucose conditions. Similarly, transfection with Pim-1 plasmid prevented high glucose–induced cardiomyocyte and cardiac progenitor cell apoptosis. Finally, a single intravenous injection of human PIM-1 via cardiotropic serotype-9 adeno-associated virus (1×1010 or 5×1010 genome copies per animal) at 4 weeks after diabetes induction led to sustained cardiac overexpression of Pim-1 and improved diastolic function and prevented left ventricular dilation and failure. Histological examination showed reduced cardiomyocyte apoptosis and fibrosis in association with increased c-kit+ cells and cardiomyocyte proliferation, whereas molecular analysis confirmed activation of the prosurvival pathway and conservation of sarcoendoplasmic reticulum Ca2+-ATPase and &agr;-myosin heavy chain in Pim-1–treated hearts. Conclusions: Pim-1 downregulation contributes in the pathogenesis of diabetic cardiomyopathy. Systemic delivery of human PIM-1 via cardiotropic adeno-associated virus serotype-9 represents a novel and effective approach to treat diabetic cardiomyopathy.


Circulation | 2012

Role for Substance P–Based Nociceptive Signaling in Progenitor Cell Activation and Angiogenesis During Ischemia in Mice and in Human Subjects

Silvia Amadesi; Carlotta Reni; Rajesh Katare; Marco Meloni; Atsuhiko Oikawa; Antonio Paolo Beltrami; Elisa Avolio; Daniela Cesselli; Orazio Fortunato; Gaia Spinetti; Raimondo Ascione; Elisa Cangiano; Marco Valgimigli; Stephen P. Hunt; Costanza Emanueli; Paolo Madeddu

Background— Pain triggers a homeostatic alarm reaction to injury. It remains unknown, however, whether nociceptive signaling activated by ischemia is relevant for progenitor cells (PC) release from bone marrow. To this end, we investigated the role of the neuropeptide substance P (SP) and cognate neurokinin 1 (NK1) nociceptor in PC activation and angiogenesis during ischemia in mice and in human subjects. Methods and Results— The mouse bone marrow contains sensory fibers and PC that express SP. Moreover, SP-induced migration provides enrichment for PC that express NK1 and promote reparative angiogenesis after transplantation in a mouse model of limb ischemia. Acute myocardial infarction and limb ischemia increase SP levels in peripheral blood, decrease SP levels in bone marrow, and stimulate the mobilization of NK1-expressing PC, with these effects being abrogated by systemic administration of the opioid receptor agonist morphine. Moreover, bone marrow reconstitution with NK1-knockout cells results in depressed PC mobilization, delayed blood flow recovery, and reduced neovascularization after ischemia. We next asked whether SP is instrumental to PC mobilization and homing in patients with ischemia. Human PC express NK1, and SP-induced migration provides enrichment for proangiogenic PC. Patients with acute myocardial infarction show high circulating levels of SP and NK1-positive cells that coexpress PC antigens, such as CD34, KDR, and CXCR4. Moreover, NK1-expressing PC are abundant in infarcted hearts but not in hearts that developed an infarct after transplantation. Conclusions— Our data highlight the role of SP in reparative neovascularization. Nociceptive signaling may represent a novel target of regenerative medicine.


Circulation Research | 2015

Combined Intramyocardial Delivery of Human Pericytes and Cardiac Stem Cells Additively Improves the Healing of Mouse Infarcted Hearts Through Stimulation of Vascular and Muscular Repair

Elisa Avolio; Marco Meloni; Helen L Spencer; Federica Riu; Rajesh Katare; Giuseppe Mangialardi; Atsuhiko Oikawa; Iker Rodriguez-Arabaolaza; Zexu Dang; Kathryn Mitchell; Carlotta Reni; Valeria Vincenza Alvino; Jonathan Rowlinson; Ugolino Livi; Daniela Cesselli; Gianni D. Angelini; Costanza Emanueli; Antonio Paolo Beltrami; Paolo Madeddu

RATIONALE Optimization of cell therapy for cardiac repair may require the association of different cell populations with complementary activities. OBJECTIVE Compare the reparative potential of saphenous vein-derived pericytes (SVPs) with that of cardiac stem cells (CSCs) in a model of myocardial infarction, and investigate whether combined cell transplantation provides further improvements. METHODS AND RESULTS SVPs and CSCs were isolated from vein leftovers of coronary artery bypass graft surgery and discarded atrial specimens of transplanted hearts, respectively. Single or dual cell therapy (300 000 cells of each type per heart) was tested in infarcted SCID (severe combined immunodeficiency)-Beige mice. SVPs and CSCs alone improved cardiac contractility as assessed by echocardiography at 14 days post myocardial infarction. The effect was maintained, although attenuated at 42 days. At histological level, SVPs and CSCs similarly inhibited infarct size and interstitial fibrosis, SVPs were superior in inducing angiogenesis and CSCs in promoting cardiomyocyte proliferation and recruitment of endogenous stem cells. The combination of cells additively reduced the infarct size and promoted vascular proliferation and arteriogenesis, but did not surpass single therapies with regard to contractility indexes. SVPs and CSCs secrete similar amounts of hepatocyte growth factor, vascular endothelial growth factor, fibroblast growth factor, stem cell factor, and stromal cell-derived factor-1, whereas SVPs release higher quantities of angiopoietins and microRNA-132. Coculture of the 2 cell populations results in competitive as well as enhancing paracrine activities. In particular, the release of stromal cell-derived factor-1 was synergistically augmented along with downregulation of stromal cell-derived factor-1-degrading enzyme dipeptidyl peptidase 4. CONCLUSIONS Combinatory therapy with SVPs and CSCs may complementarily help the repair of infarcted hearts.

Collaboration


Dive into the Daniela Cesselli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miran Skrap

Misericordia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge