Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Cota is active.

Publication


Featured researches published by Daniela Cota.


Annual Review of Nutrition | 2008

Regulation of Food Intake Through Hypothalamic Signaling Networks Involving mTOR

Stephen C. Woods; Randy J. Seeley; Daniela Cota

To maintain normal activity, single cells must assure that their energy needs and utilization are continuously matched. Likewise, multicellular organisms must constantly coordinate energy intake and expenditure to maintain energy homeostasis. The brain, and the hypothalamus in particular, plays a critical role in integrating and coordinating several types of signals, including hormones and nutrients, to guarantee such homeostasis. Like single cells, the hypothalamus also profits from intracellular pathways known to work as fuel sensors to maintain energy balance. One such pathway is the mammalian target of rapamycin (mTOR). mTOR integrates different sensory inputs to regulate protein synthesis rates in individual cells, and it has recently been implicated in the central nervous system to regulate food intake and body weight as well. This review provides an overview of the role of hypothalamic intracellular fuel sensors in the overall control of energy balance and discusses the potential contribution of these fuel-sensing mechanisms to the metabolic dysregulation associated with obesity.


Diabetes-metabolism Research and Reviews | 2007

CB1 receptors: emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health.

Daniela Cota

Insulin resistance, dyslipidaemia and obesity are the major cardiometabolic risk factors contributing to the development of type 2 diabetes and cardiovascular disease (CVD). Owing to the increasing prevalence of obesity, type 2 diabetes, and CVD, new and effective pharmacologic therapies are urgently needed. In this regard, the endogenous cannabinoid system (ECS), a neuromodulatory system involved in the regulation of various aspects of energy balance and eating behaviour through central and peripheral mechanisms, may present the potential to meet this need. In the central nervous system (CNS), cannabinoid type 1 (CB1) receptors and their respective ligands, the endocannabinoids, have a significant role in the modulation of food intake and motivation to consume palatable food. CB1 receptors have also been found in organs involved in the regulation of metabolic homeostasis, such as liver, white adipose tissue, muscle and pancreas. Dysregulation of the ECS has been associated with the development of dyslipidaemia, glucose intolerance, and obesity, and CB1 receptor blockade may have a role in ameliorating these metabolic abnormalities. Thus, pharmacologic options targeting the ECS may provide a novel, effective approach to the prevention and management of CVD, type 2 diabetes and obesity. Copyright


Obesity | 2009

Food intake-independent effects of CB1 antagonism on glucose and lipid metabolism.

Daniela Cota; Darleen A. Sandoval; Massimiliano Olivieri; Elena Prodi; David A. D'Alessio; Stephen C. Woods; Randy J. Seeley; Silvana Obici

Overactivity of the endocannabinoid system (ECS) has been linked to abdominal obesity and other risk factors for cardiovascular disease and type 2 diabetes. Conversely, administration of cannabinoid receptor type 1 (CB1) antagonists reduces adiposity in obese animals and humans. This effect is only in part secondary to the anorectic action of CB1 agonists. In order to assess the actions of CB1 antagonism on glucose homeostasis, diet‐induced obese (DIO) rats received the CB1 antagonist rimonabant (10 mg/kg, intraperitoneally (IP)) or its vehicle for 4 weeks, or were pair‐fed to the rimonabant‐treated group for the same length of time. Rimonabant treatment transiently reduced food intake, while inducing body weight loss throughout the study. Rats receiving rimonabant had significantly less body fat and circulating leptin compared to both vehicle and pair‐fed groups. Rimonabant, but not pair‐feeding, also significantly decreased circulating nonesterified fatty acid (NEFA) and triacylglycerol (TG) levels, and reduced TG content in oxidative skeletal muscle. Although no effects were observed during a glucose tolerance test (GTT), rimonabant restored insulin sensitivity to that of chow‐fed, lean controls during an insulin tolerance test (ITT). Conversely, a single dose of rimonabant to DIO rats had no acute effect on insulin sensitivity. These findings suggest that in diet‐induced obesity, chronic CB1 antagonism causes weight loss and improves insulin sensitivity by diverting lipids from storage toward utilization. These effects are independent of the anorectic action of the drug.


Endocrinology | 2009

Complex Regulation of Mammalian Target of Rapamycin Complex 1 in the Basomedial Hypothalamus by Leptin and Nutritional Status

Eneida C. Villanueva; Heike Münzberg; Daniela Cota; Rebecca L. Leshan; Keely Kopp; Ryoko Ishida-Takahashi; Justin C. Jones; Diane C. Fingar; Randy J. Seeley; Martin G. Myers

The medial basal hypothalamus, including the arcuate nucleus (ARC) and the ventromedial hypothalamic nucleus (VMH), integrates signals of energy status to modulate metabolism and energy balance. Leptin and feeding regulate the mammalian target of rapamycin complex 1 (mTORC1) in the hypothalamus, and hypothalamic mTORC1 contributes to the control of feeding and energy balance. To determine the mechanisms by which leptin modulates mTORC1 in specific hypothalamic neurons, we immunohistochemically assessed the mTORC1-dependent phosphorylation of ribosomal protein S6 (pS6). In addition to confirming the modulation of ARC mTORC1 activity by acute leptin treatment, this analysis revealed the robust activation of mTORC1-dependent ARC pS6 in response to fasting and leptin deficiency in leptin receptor-expressing Agouti-related protein neurons. In contrast, fasting and leptin deficiency suppress VMH mTORC1 signaling. The appropriate regulation of ARC mTORC1 by mutant leptin receptor isoforms correlated with their ability to suppress the activity of Agouti-related protein neurons, suggesting the potential stimulation of mTORC1 by the neuronal activity. Indeed, fasting- and leptin deficiency-induced pS6-immunoreactivity (IR) extensively colocalized with c-Fos-IR in ARC and VMH neurons. Furthermore, ghrelin, which activates orexigenic ARC neurons, increased ARC mTORC1 activity and induced colocalized pS6- and c-Fos-IR. Thus, neuronal activity promotes mTORC1/pS6 in response to signals of energy deficit. In contrast, insulin, which activates mTORC1 via the phosphatidylinositol 3-kinase pathway, increased ARC and VMH pS6-IR in the absence of neuronal activation. The regulation of mTORC1 in the basomedial hypothalamus thus varies by cell and stimulus type, as opposed to responding in a uniform manner to nutritional and hormonal perturbations.


Diabetologia | 2011

Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice

M. Bajzer; M. Olivieri; Michael Haas; Paul T. Pfluger; I. J. Magrisso; Michelle T. Foster; Matthias H. Tschöp; K. A. Krawczewski-Carhuatanta; Daniela Cota; Silvana Obici

Aims/hypothesisWe examined the physiological mechanisms by which cannabinoid receptor 1 (CB1) antagonism improves glucose metabolism and insulin sensitivity independent of its anorectic and weight-reducing effects, as well as the effects of CB1 antagonism on brown adipose tissue (BAT) function.MethodsThree groups of diet-induced obese mice received for 1xa0month: vehicle; the selective CB1 antagonist SR141716; or vehicle/pair-feeding. After measurements of body composition and energy expenditure, mice underwent euglycaemic–hyperinsulinaemic clamp studies to assess in vivo insulin action. In separate cohorts, we assessed insulin action in weight-reduced mice with diet-induced obesity (DIO), and the effect of CB1 antagonism on BAT thermogenesis. Surgical denervation of interscapular BAT (iBAT) was carried out in order to study the requirement for the sympathetic nervous system in mediating the effects of CB1 antagonism on BAT function.ResultsWeight loss associated with chronic CB1 antagonism was accompanied by increased energy expenditure, enhanced insulin-stimulated glucose utilisation, and marked activation of BAT thermogenesis. Insulin-dependent glucose uptake was significantly increased in white adipose tissue and BAT, whereas glycogen synthesis was increased in liver, fat and muscle. Despite marked weight loss in the mice, SR141716 treatment did not improve insulin-mediated suppression of hepatic glucose production nor increase skeletal muscle glucose uptake. Denervation of iBAT blunted the effect of SR141716 on iBAT differentiation and insulin-mediated glucose uptake.Conclusions/interpretationChronic CB1 antagonism markedly enhances insulin-mediated glucose utilisation in DIO mice, independent of its anorectic and weight-reducing effects. The potent effect on insulin-stimulated BAT glucose uptake reveals a novel role for CB1 receptors as regulators of glucose metabolism.


Neuron | 2006

Leptin in Energy Balance and Reward: Two Faces of the Same Coin?

Daniela Cota; Jason G. Barrera; Randy J. Seeley

Leptin receptors are expressed on mesolimbic dopamine neurons, yet little is known about the functional significance of this anatomical relationship. In this issue of Neuron, Hommel et al. reveal a novel site for leptins regulation of feeding. In turn, Fulton et al. propose a novel role for leptin in regulating non-feeding-related motivated behaviors.


Frontiers of Hormone Research | 2008

Role of the Endocannabinoid System in Energy Balance Regulation and Obesity

Daniela Cota

The endogenous cannabinoid system (ECS) is a neuromodulatory system recently recognized to have a role in the regulation of various aspects of eating behavior and energy balance through central and peripheral mechanisms. In the central nervous system, cannabinoid type 1 receptors and their endogenous ligands, the endocannabinoids, are involved in modulating food intake and motivation to consume palatable food. Moreover, the ECS is present in peripheral organs, such as liver, white adipose tissue, muscle, and pancreas, where it seems to be involved in the regulation of lipid and glucose homeostasis. Dysregulation of the ECS has been associated with the development of obesity and its sequelae, such as dyslipidemia and diabetes. Conversely, recent clinical trials have shown that cannabinoid type 1 receptor blockade may ameliorate these metabolic abnormalities. Although further investigation is needed to better define the actual mechanisms of action, pharmacologic approaches targeting the ECS may provide a novel, effective option for the management of obesity, type 2 diabetes and cardiovascular disease.


Diabetes | 2008

Fatty Acid Synthase Inhibitors Modulate Energy Balance via Mammalian Target of Rapamycin Complex 1 Signaling in the Central Nervous System

Karine Proulx; Daniela Cota; Stephen C. Woods; Randy J. Seeley

OBJECTIVE—Evidence links the hypothalamic fatty acid synthase (FAS) pathway to the regulation of food intake and body weight. This includes pharmacological inhibitors that potently reduce feeding and body weight. The mammalian target of rapamycin (mTOR) is an intracellular fuel sensor whose activity in the hypothalamus is also linked to the regulation of energy balance. The purpose of these experiments was to determine whether hypothalamic mTOR complex 1 (mTORC1) signaling is involved in mediating the effects of FAS inhibitors. RESEARCH DESIGN AND METHODS—We measured the hypothalamic phosphorylation of two downstream targets of mTORC1, S6 kinase 1 (S6K1) and S6 ribosomal protein (S6), after administration of the FAS inhibitors C75 and cerulenin in rats. We evaluated food intake in response to FAS inhibitors in rats pretreated with the mTOR inhibitor rapamycin and in mice lacking functional S6K1 (S6K1−/−). Food intake and phosphorylation of S6K1 and S6 were also determined after C75 injection in rats maintained on a ketogenic diet. RESULTS—C75 and cerulenin increased phosphorylation of S6K1 and S6, and their anorexic action was reduced in rapamycin-treated rats and in S6K1−/− mice. Consistent with our previous findings, C75 was ineffective at reducing caloric intake in ketotic rats. Under ketosis, C75 was also less efficient at stimulating mTORC1 signaling. CONCLUSIONS—These findings collectively indicate an important interaction between the FAS and mTORC1 pathways in the central nervous system for regulating energy balance, possibly via modulation of neuronal glucose utilization.


Archive | 2007

Endocannabinoids and Energy Homeostasis

Stephen C. Woods; Daniela Cota

The body’s endogenous endocannabinoid system includes two endogenous agoni sts for cannabinoid-(CB)-l receptors, anadamide and 2-arachidonoyl-glycerol (2-AG). Both of these endocannabinoids (ECs) are fatty acid signals derived from cell membranes. They exert a coordinated action at multiple tissues to promote increased food intake, lipogenesis, and storage of fat. Endocannabinoids interact with multiple hypothalamic circuits and transmitter systems to stimulate food intake in general, and they also act in reward areas of the brain to selectively enhance intake of palatable foods. Activation of CB1 receptors increases enzyme activity that causes de novo fatty acids to be formed in the liver and circulating lipids to be taken up by fat cells. All these actions are reversed in animals lacking CB1 receptors, and there is growing evidence that activity of the endocannabinoid system is tonically increased in animal and human obesity. Acute or chronic administration of selective synthetic CB1 antagonists to overweight or obese individuals causes weight loss, reduced waist circumference, and an improved lipid and glycemic profile. Developing ligands for endocannabinoid receptors is an important novel therapeutic strategy for the treatment of metabolic dysregulation.


Science | 2006

Hypothalamic mTOR signaling regulates food intake

Daniela Cota; Karine Proulx; Kathi Smith; Sara C. Kozma; George Thomas; Stephen C. Woods; Randy J. Seeley

Collaboration


Dive into the Daniela Cota's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karine Proulx

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beat Lutz

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge