Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela del Gaudio is active.

Publication


Featured researches published by Daniela del Gaudio.


Nature Genetics | 2008

Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster.

Trilochan Sahoo; Daniela del Gaudio; Jennifer R German; Marwan Shinawi; Sarika U. Peters; Richard E. Person; Adolfo Garnica; Sau Wai Cheung; Arthur L. Beaudet

Prader-Willi syndrome (PWS) is caused by deficiency for one or more paternally expressed imprinted transcripts within chromosome 15q11-q13, including SNURF-SNRPN and multiple small nucleolar RNAs (snoRNAs). Balanced chromosomal translocations that preserve expression of SNURF-SNRPN and centromeric genes but separate the snoRNA HBII-85 cluster from its promoter cause PWS. A microdeletion of the HBII-85 snoRNAs in a child with PWS provides, in combination with previous data, effectively conclusive evidence that deficiency of HBII-85 snoRNAs causes the key characteristics of the PWS phenotype, although some atypical features suggest that other genes in the region may make more subtle phenotypic contributions.


Human Mutation | 2010

Detection of Clinically Relevant Exonic Copy-Number Changes by Array CGH

Philip M. Boone; Carlos A. Bacino; Chad A. Shaw; Patricia A. Eng; Patricia Hixson; Amber N. Pursley; Sung Hae L Kang; Yaping Yang; Joanna Wiszniewska; Beata Nowakowska; Daniela del Gaudio; Zhilian Xia; Gayle Simpson-Patel; La Donna Immken; James B. Gibson; Anne C.H. Tsai; Jennifer A. Bowers; Tyler Reimschisel; Christian P. Schaaf; Lorraine Potocki; Fernando Scaglia; Tomasz Gambin; Maciej Sykulski; Magdalena Bartnik; Katarzyna Derwińska; Barbara Wisniowiecka-Kowalnik; Seema R. Lalani; Frank J. Probst; Weimin Bi; Arthur L. Beaudet

Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy‐number variation (CNV). However, intragenic deletions or duplications—those including genomic intervals of a size smaller than a gene—have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy‐number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom‐designed, exon‐targeted oligonucleotide array to detect intragenic copy‐number changes in patients with various clinical phenotypes. Hum Mutat 31:1–17, 2010.


Genetics in Medicine | 2006

Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization

Trilochan Sahoo; Sau Wai Cheung; Patricia A. Ward; Sandra Darilek; Ankita Patel; Daniela del Gaudio; Sung Hae L Kang; Seema R. Lalani; Jiangzhen Li; Sallie McAdoo; Audrey Burke; Chad A. Shaw; Pawel Stankiewicz; A. Craig Chinault; Ignatia B. Van den Veyver; Benjamin B. Roa; Arthur L. Beaudet; Christine M. Eng

Purpose: This study was designed to evaluate the feasibility of using a targeted array-CGH strategy for prenatal diagnosis of genomic imbalances in a clinical setting of current pregnancies.Methods: Women undergoing prenatal diagnosis were counseled and offered array-CGH (BCM V4.0) in addition to routine chromosome analysis. Array-CGH was performed with DNA directly from amniotic fluid cells with whole genome amplification, on chorionic villus samples with amplification as necessary, and on cultured cells without amplification.Results: Ninety-eight pregnancies (56 amniotic fluid and 42 CVS specimens) were studied with complete concordance between karyotype and array results, including 5 positive cases with chromosomal abnormalities. There was complete concordance of array results for direct and cultured cell analysis in 57 cases tested by both methods. In 12 cases, the array detected copy number variation requiring testing of parental samples for optimal interpretation. Array-CGH results were available in an average of 6 and 16 days for direct and cultured cells, respectively. Patient acceptance of array-CGH testing was 74%.Conclusion: This study demonstrates the feasibility of using array-CGH for prenatal diagnosis, including reliance on direct analysis without culturing cells. Use of array-CGH should increase the detection of abnormalities relative to the risk, and is an option for an enhanced level of screening for chromosomal abnormalities in high risk pregnancies.


Neurology | 2005

Cerebral folate deficiency with developmental delay, autism, and response to folinic acid

Paolo Moretti; Trilochan Sahoo; Keith Hyland; Teodoro Bottiglieri; Sarika U. Peters; Daniela del Gaudio; Benjamin B. Roa; S. Curry; H. Zhu; R. H. Finnell; Jeffrey L. Neul; Vincent Ramaekers; Nenad Blau; Carlos A. Bacino; Geoffrey P. Miller; Fernando Scaglia

The authors describe a 6-year-old girl with developmental delay, psychomotor regression, seizures, mental retardation, and autistic features associated with low CSF levels of 5-methyltetrahydrofolate, the biologically active form of folates in CSF and blood. Folate and B12 levels were normal in peripheral tissues, suggesting cerebral folate deficiency. Treatment with folinic acid corrected CSF abnormalities and improved motor skills.


Nature Genetics | 2011

Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome.

Claudia M.B. Carvalho; Melissa B. Ramocki; Davut Pehlivan; Luis M. Franco; Claudia Gonzaga-Jauregui; Ping Fang; Alanna E. McCall; Eniko K. Pivnick; Stacy Hines-Dowell; Laurie H. Seaver; Linda Friehling; Sansan Lee; Rosemarie Smith; Daniela del Gaudio; Marjorie Withers; Pengfei Liu; Sau Wai Cheung; John W. Belmont; Huda Y. Zoghbi; P. J. Hastings; James R. Lupski

We identified complex genomic rearrangements consisting of intermixed duplications and triplications of genomic segments at the MECP2 and PLP1 loci. These complex rearrangements were characterized by a triplicated segment embedded within a duplication in 11 unrelated subjects. Notably, only two breakpoint junctions were generated during each rearrangement formation. All the complex rearrangement products share a common genomic organization, duplication-inverted triplication-duplication (DUP-TRP/INV-DUP), in which the triplicated segment is inverted and located between directly oriented duplicated genomic segments. We provide evidence that the DUP-TRP/INV-DUP structures are mediated by inverted repeats that can be separated by >300 kb, a genomic architecture that apparently leads to susceptibility to such complex rearrangements. A similar inverted repeat–mediated mechanism may underlie structural variation in many other regions of the human genome. We propose a mechanism that involves both homology-driven events, via inverted repeats, and microhomologous or nonhomologous events.


American Journal of Medical Genetics Part A | 2010

22q13.3 Deletion Syndrome: Clinical and Molecular Analysis Using Array CGH

Shweta U. Dhar; Daniela del Gaudio; Jennifer R German; Sarika U. Peters; Zhishuo Ou; Patricia I. Bader; Jonathan S. Berg; Maria Blazo; Chester W. Brown; Brett H. Graham; Theresa A. Grebe; Seema R. Lalani; Mira Irons; Steven Sparagana; Misti Williams; John A. Phillips; Arthur L. Beaudet; Pawel Stankiewicz; Ankita Patel; S.W. Cheung; Trilochan Sahoo

The 22q13.3 deletion syndrome results from loss of terminal segments of varying sizes at 22qter. Few genotype–phenotype correlations have been found but all patients have mental retardation and severe delay, or absence of, expressive speech. We carried out clinical and molecular characterization of 13 patients. Developmental delay and speech abnormalities were common to all and comparable in frequency and severity to previously reported cases. Array‐based comparative genomic hybridization showed the deletions to vary from 95 kb to 8.5 Mb. We also carried out high‐resolution 244K array comparative genomic hybridization in 10 of 13 patients, that defined the proximal and distal breakpoints of each deletion and helped determine the size, extent, and gene content within the deletion. Two patients had a smaller 95 kb terminal deletion with breakpoints within the SHANK3 gene while three other patients had a similar 5.5 Mb deletion implying the recurrent nature of these deletions. The two largest deletions were found in patients with ring chromosome 22. No correlation could be made with deletion size and phenotype although complete/partial SHANK3 was deleted in all patients. There are very few reports on array comparative genomic hybridization analysis on patients with the 22q13.3 deletion syndrome, and we aim to accurately characterize these patients both clinically and at the molecular level, to pave the way for further genotype–phenotype correlations.


Human Mutation | 2008

Molecular diagnosis of Duchenne/Becker muscular dystrophy: enhanced detection of dystrophin gene rearrangements by oligonucleotide array-comparative genomic hybridization.

Daniela del Gaudio; Yaping Yang; Barbara A. Boggs; Eric S. Schmitt; Jennifer A. Lee; Trilochan Sahoo; Hoang T. Pham; Joanna Wiszniewska; A. Craig Chinault; Arthur L. Beaudet; Christine M. Eng

The dystrophinopathies, which include Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X‐linked dilated cardiomyopathy, are X‐linked recessive neuromuscular disorders caused by mutations in the dystrophin gene (DMD). Approximately 70% of mutations causing DMD/BMD are deletions or duplications and the remainder are point mutations. Current clinical diagnostic strategies have limits of resolution that make detection of small DMD deletions and duplications difficult to identify. We developed an oligonucleotide‐based array comparative genomic hybridization (array‐CGH) platform for the enhanced identification of deletions and duplications in the DMD gene. Using this platform, 39 previously characterized patient samples were analyzed, resulting in the accurate identification of 38 out of 39 rearrangements. Array‐CGH did not identify a 191‐bp deletion partially involving exon 19 that created a junction fragment detectable by Southern hybridization. To further evaluate the sensitivity and specificity of this array, we performed concurrent blinded analyses by conventional methodologies and array‐CGH of 302 samples submitted to our clinical laboratory for DMD deletion/duplication testing. Results obtained on the array‐CGH platform were concordant with conventional methodologies in 300 cases, including 69 with clinically‐significant rearrangements. In addition, the oligonucleotide array‐CGH platform detected two duplications that conventional methods failed to identify. Five copy‐number variations (CNVs) were identified; small size and location within introns predict the benign nature of these CNVs with negligible effect on gene function. These results demonstrate the utility of this array‐CGH platform in detecting submicroscopic copy‐number changes involving the DMD gene, as well as providing more precise breakpoint identification at high‐resolution and with improved sensitivity. Hum Mutat 29(9), 1100–1107, 2008.


Human Genetics | 2009

Regional genomic instability predisposes to complex dystrophin gene rearrangements

Junko Oshima; Daniel B. Magner; Jennifer A. Lee; Amy M. Breman; Eric S. Schmitt; Lisa D. White; Carol A. Crowe; Michelle Merrill; Parul Jayakar; Aparna Rajadhyaksha; Christine M. Eng; Daniela del Gaudio

Mutations in the dystrophin gene (DMD) cause Duchenne and Becker muscular dystrophies and the majority of cases are due to DMD gene rearrangements. Despite the high incidence of these aberrations, little is known about their causative molecular mechanism(s). We examined 792 DMD/BMD clinical samples by oligonucleotide array-CGH and report on the junction sequence analysis of 15 unique deletion cases and three complex intragenic rearrangements to elucidate potential underlying mechanism(s). Furthermore, we present three cases with intergenic rearrangements involving DMD and neighboring loci. The cases with intragenic rearrangements include an inversion with flanking deleted sequences; a duplicated segment inserted in direct orientation into a deleted region; and a splicing mutation adjacent to a deletion. Bioinformatic analysis demonstrated that 7 of 12 breakpoints combined among 3 complex cases aligned with repetitive sequences, as compared to 4 of 30 breakpoints for the 15 deletion cases. Moreover, the inversion/deletion case may involve a stem-loop structure that has contributed to the initiation of this rearrangement. For the duplication/deletion and splicing mutation/deletion cases, the presence of the first mutation, either a duplication or point mutation, may have elicited the deletion events in an attempt to correct preexisting mutations. While NHEJ is one potential mechanism for these complex rearrangements, the highly complex junction sequence of the inversion/deletion case suggests the involvement of a replication-based mechanism. Our results support the notion that regional genomic instability, aided by the presence of repetitive elements, a stem-loop structure, and possibly preexisting mutations, may elicit complex rearrangements of the DMD gene.


Molecular Genetics and Metabolism | 2014

Phenotypic heterogeneity in monogenic diabetes: The clinical and diagnostic utility of a gene panel-based next-generation sequencing approach

Gorka Alkorta-Aranburu; David Carmody; Y.W. Cheng; Viswateja Nelakuditi; L. Ma; Jazzmyne T. Dickens; Soma Das; Siri Atma W. Greeley; Daniela del Gaudio

Single gene mutations that primarily affect pancreatic β-cell function account for approximately 1-2% of all cases of diabetes. Overlapping clinical features with common forms of diabetes makes diagnosis of monogenic diabetes challenging. A genetic diagnosis often leads to significant alterations in treatment, allows better prediction of disease prognosis and progression, and has implications for family members. Currently, genetic testing for monogenic diabetes relies on selection of appropriate individual genes for analysis based on the availability of often-limited phenotypic information, decreasing the likelihood of making a genetic diagnosis. We thus developed a targeted next-generation sequencing (NGS) assay for the detection of mutations in 36 genes known to cause monogenic forms of diabetes, including transient or permanent neonatal diabetes mellitus (TNDM or PNDM), maturity-onset diabetes of the young (MODY) and rare syndromic forms of diabetes. A total of 95 patient samples were analyzed: 19 with known causal mutations and 76 with a clinically suggestive phenotype but lacking a genetic diagnosis. All previously identified mutations were detected, validating our assay. Pathogenic sequence changes were identified in 19 out of 76 (25%) patients: 7 of 32 (22%) NDM cases, and 12 of 44 (27%) MODY cases. In 2 NDM patients the causal mutation was not expected as consanguinity was not reported and there were no clinical features aside from diabetes. A 3 year old patient with NDM diagnosed at 3 months of age, who previously tested negative for INS, KCNJ11 and ABCC8 mutations, was found to carry a novel homozygous mutation in EIF2AK3 (associated with Wolcott-Rallison syndrome), a gene not previously suspected because consanguinity, delayed growth, abnormal bone development and hepatic complications had not been reported. Similarly, another infant without a history of consanguinity was found to have a homozygous GCK mutation causing PNDM at birth. This study demonstrates the effectiveness of multi-gene panel analysis in uncovering molecular diagnoses in patients with monogenic forms of diabetes.


Gene | 2014

Two novel RAD21 mutations in patients with mild Cornelia de Lange syndrome-like presentation and report of the first familial case

Agata Minor; Marwan Shinawi; Jacob S. Hogue; Marisa Vineyard; Damara R. Hamlin; Christopher A. Tan; Kirsten Donato; Latrice Wysinger; Shaun Botes; Soma Das; Daniela del Gaudio

Cornelia de Lange syndrome (CdLS) is a developmental disorder characterized by limb reduction defects, characteristic facial features and impaired cognitive development. Mutations in the NIPBL gene predominate; however, mutations in other cohesin complex genes have also been implicated, particularly in atypical and mild CdLS cases. Missense mutations and whole gene deletions in RAD21 have been identified in children with growth retardation, minor skeletal anomalies and facial features that overlap findings in individuals with CdLS. We report the first intragenic deletion and frameshift mutations identified in RAD21 in two patients presenting with atypical CdLS. One patient had an in-frame deletion of exon 13, while the second patient had a c.592_593dup frameshift mutation. The first patient presented with developmental delay, hypospadias, inguinal hernia and dysmorphic features while, the second patient presented with developmental delay, characteristic facial features, hirsutism, and hand and feet anomalies, with the first patient being milder than the second. The in-frame deletion mutation was found to be inherited from the mother who had a history of melanoma and other unspecified medical problems. This study expands the spectrum of RAD21 mutations and emphasizes the clinical utility of performing RAD21 mutation analysis in patients presenting with atypical forms of CdLS. Moreover, the variability of clinical presentation within families and low penetrance of mutations as well as the significance of performing molecular genetic testing in mildly affected patients are discussed.

Collaboration


Dive into the Daniela del Gaudio's collaboration.

Top Co-Authors

Avatar

Soma Das

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur L. Beaudet

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Lee

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge