Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Falk is active.

Publication


Featured researches published by Daniela Falk.


Lancet Neurology | 2014

Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial

Jens Volkmann; Joerg Mueller; Günther Deuschl; Andrea A. Kühn; Joachim K. Krauss; Werner Poewe; Lars Timmermann; Daniela Falk; Anatol Kivi; Gerd H. Schneider; Alfons Schnitzler; Martin Südmeyer; Jürgen Voges; Alexander Wolters; Matthias Wittstock; Jan Uwe Müller; Sascha Hering; Wilhelm Eisner; Jan Vesper; Thomas Prokop; Marcus O. Pinsker; Christoph Schrader; Manja Kloss; Karl L. Kiening; Kai Boetzel; Jan H. Mehrkens; Inger Marie Skogseid; Jon Ramm-Pettersen; Georg Kemmler; Kailash P. Bhatia

BACKGROUND Cervical dystonia is managed mainly by repeated botulinum toxin injections. We aimed to establish whether pallidal neurostimulation could improve symptoms in patients not adequately responding to chemodenervation or oral drug treatment. METHODS In this randomised, sham-controlled trial, we recruited patients with cervical dystonia from centres in Germany, Norway, and Austria. Eligible patients (ie, those aged 18-75 years, disease duration ≥3 years, Toronto Western Spasmodic Torticollis Rating Scale [TWSTRS] severity score ≥15 points) were randomly assigned (1:1) to receive active neurostimulation (frequency 180 Hz; pulse width 120 μs; amplitude 0·5 V below adverse event threshold) or sham stimulation (amplitude 0 V) by computer-generated randomisation lists with randomly permuted block lengths stratified by centre. All patients, masked to treatment assignment, were implanted with a deep brain stimulation device and received their assigned treatment for 3 months. Neurostimulation was activated in the sham group at 3 months and outcomes were reassessed in all patients after 6 months of active treatment. Treating physicians were not masked. The primary endpoint was the change in the TWSTRS severity score from baseline to 3 months, assessed by two masked dystonia experts using standardised videos, analysed by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00148889. FINDINGS Between Jan 19, 2006, and May 29, 2008, we recruited 62 patients, of whom 32 were randomly assigned to neurostimulation and 30 to sham stimulation. Outcome data were recorded in 60 (97%) patients at 3 months and 56 (90%) patients at 6 months. At 3 months, the reduction in dystonia severity was significantly greater with neurostimulation (-5·1 points [SD 5·1], 95% CI -7·0 to -3·5) than with sham stimulation (-1·3 [2·4], -2·2 to -0·4, p=0·0024; mean between-group difference 3·8 points, 1·8 to 5·8) in the intention-to-treat population. Over the course of the study, 21 adverse events (five serious) were reported in 11 (34%) of 32 patients in the neurostimulation group compared with 20 (11 serious) in nine (30%) of 30 patients in the sham-stimulation group. Serious adverse events were typically related to the implant procedure or the implanted device, and 11 of 16 resolved without sequelae. Dysarthria (in four patients assigned to neurostimulation vs three patients assigned to sham stimulation), involuntary movements (ie, dyskinesia or worsening of dystonia; five vs one), and depression (one vs two) were the most common non-serious adverse events reported during the course of the study. INTERPRETATION Pallidal neurostimulation for 3 months is more effective than sham stimulation at reducing symptoms of cervical dystonia. Extended follow-up is needed to ascertain the magnitude and stability of chronic neurostimulation effects before this treatment can be recommended as routine for patients who are not responding to conventional medical therapy. FUNDING Medtronic.


Brain | 2013

Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial

Karsten Witt; Oliver Granert; Christine Daniels; Jens Volkmann; Daniela Falk; Thilo van Eimeren; Günther Deuschl

Deep brain stimulation of the subthalamic nucleus improves motor functions in patients suffering from advanced Parkinsons disease but in some patients, it is also associated with a mild decline in cognitive functioning about one standard deviation from the preoperative state. We assessed the impact of the cortical lead entry point, the subcortical electrode path and the position of the active electrode contacts on neuropsychological changes after subthalamic nucleus-deep brain stimulation compared to a control group of patients receiving best medical treatment. Sixty-eight patients with advanced Parkinsons disease were randomly assigned to have subthalamic nucleus-deep brain stimulation or best medical treatment for Parkinsons disease. All patients had a blinded standardized neuropsychological exam (Mattis Dementia Rating scale, backward digit span, verbal fluency and Stroop task performance) at baseline and after 6 months of treatment. Patients with subthalamic nucleus-deep brain stimulation were defined as impaired according to a mild decline of one or more standard deviations compared to patients in the best medical treatment group. The cortical entry point of the electrodes, the electrode trajectories and the position of the active electrode contact were transferred into a normalized brain volume by an automated, non-linear registration algorithm to allow accurate statistical group analysis using pre- and postoperative magnetic resonance imaging data. Data of 31 patients of the subthalamic nucleus-deep brain stimulation group and 31 patients of the best medical treatment group were analysed. The subthalamic nucleus-deep brain stimulation group showed impaired semantic fluency compared with the best medical treatment group 6 months after surgery (P = 0.02). Electrode trajectories intersecting with caudate nuclei increased the risk of a decline in global cognition and working memory performance. Statistically, for every 0.1 ml overlap with a caudate nucleus, the odds for a decline >1 standard deviation increased by a factor of 37.4 (odds ratio, confidence interval 2.1-371.8) for the Mattis Dementia Rating Scale and by a factor of 8.8 (odds ratio, confidence interval 1.0-70.9) for the backward digit span task. Patients with subthalamic nucleus-deep brain stimulation who declined in semantic verbal fluency, Stroop task and the backward digit span task performance showed a position of the active electrode outside the volume built by the active electrodes of stable performers. Passage of the chronic stimulation lead through the head of the caudate increases the risk of global cognitive decline and working memory performance after subthalamic nucleus-deep brain stimulation in Parkinsons disease. Therefore the electrode path should be planned outside the caudate nuclei, whenever possible. This study also stresses the importance of precise positioning of the active stimulating contact within the subthalamic volume to avoid adverse effects on semantic verbal fluency and response inhibition.


Movement Disorders | 2011

Long-Term Clinical Outcome in Meige Syndrome Treated with Internal Pallidum Deep Brain Stimulation

René Reese; Doreen Gruber; Thomas Schoenecker; Hansjörg Bäzner; Christian Blahak; H. Holger Capelle; Daniela Falk; Jan Herzog; Marcus Pinsker; Gerd H. Schneider; Christoph Schrader; Günther Deuschl; Günther M. Mehdorn; Jens Volkmann; Joachim K. Krauss

Deep brain stimulation of the globus pallidus internus (GPi DBS) is effective in the treatment of primary segmental and generalized dystonia. Although limb, neck, or truncal dystonia are markedly improved, orofacial dystonia is ameliorated to a lesser extent. Nevertheless, several case reports and small cohort studies have described favorable short‐term results of GPi DBS in patients with severe Meige syndrome. Here, we extend this preliminary experience by reporting long‐term outcome in a multicenter case series, following 12 patients (6 women, 6 men) with Meige syndrome for up to 78 months after bilateral GPi DBS. We retrospectively assessed dystonia severity based on preoperative and postoperative video documentation. Mean age of patients at surgery was 64.5 ± 4.4 years, and mean disease duration 8.3 ± 4.4 years. Dystonia severity as assessed by the Burke–Fahn–Marsden Dystonia Rating Scale showed a mean improvement of 45% at short‐term follow‐up (4.4 ± 1.5 months; P < 0.001) and of 53% at long‐term follow‐up (38.8 ± 21.7 months; P < 0.001). Subscores for eyes were improved by 38% (P = 0.004) and 47% (P < 0.001), for mouth by 50% (P < 0.001) and 56% (P < 0.001), and for speech/swallowing by 44% (P = 0.058) and 64% (P = 0.004). Mean improvements were 25% (P = 0.006) and 38% (P < 0.001) on the Blepharospasm Movement Scale and 44% (P < 0.001) and 49% (P < 0.001) on the Abnormal Involuntary Movement Scale. This series, which is the first to demonstrate a long‐term follow‐up in a large number of patients, shows that GPi DBS is a safe and highly effective therapy for Meige syndrome. The benefit is preserved for up to 6 years.


Brain | 2010

Gait ataxia in essential tremor is differentially modulated by thalamic stimulation

Alfonso Fasano; Jan Herzog; Jan Raethjen; Franziska E.M. Rose; Muthuraman Muthuraman; Jens Volkmann; Daniela Falk; Rodger J. Elble; Günther Deuschl

Patients with advanced stages of essential tremor frequently exhibit tandem gait ataxia with impaired balance control and imprecise foot placement, resembling patients with a cerebellar deficit. Thalamic deep brain stimulation, a surgical therapy for otherwise intractable cases, has been shown to improve tremor, but its impact on cerebellar-like gait difficulties remains to be elucidated. Eleven patients affected by essential tremor (five females; age 69.8 ± 3.9 years; disease duration 24.4 ± 11.2 years; follow-up after surgery 24.7 ± 20.3 months) were evaluated during the following conditions: stimulation off, stimulation on and supra-therapeutic stimulation. Ten age-matched healthy controls served as the comparison group. Locomotion by patients and controls was assessed with (i) overground gait and tandem gait; (ii) balance-assisted treadmill tandem gait and (iii) unassisted treadmill gait. The two treadmill paradigms were kinematically analysed using a 3D opto-electronic motion analysis system. Established clinical and kinesiological measures of ataxia were computed. During stimulation off, the patients exhibited ataxia in all assessment paradigms, which improved during stimulation on and worsened again during supra-therapeutic stimulation. During over ground tandem gait, patients had more missteps and slower gait velocities during stimulation off and supra-therapeutic stimulation than during stimulation on. During balance-assisted tandem gait, stimulation on reduced the temporospatial variability in foot trajectories to nearly normal values, while highly variable (ataxic) foot trajectories were observed during stimulation off and supra-therapeutic stimulation. During unassisted treadmill gait, stimulation on improved gait stability compared with stimulation off and supra-therapeutic stimulation, as demonstrated by increased gait velocity and ankle rotation. These improvements in ataxia were not a function of reduced tremor in the lower limbs or torso. In conclusion, we demonstrate the impact of thalamic stimulation on gait ataxia in patients with essential tremor with improvement by stimulation on and deterioration by supra-therapeutic stimulation, despite continued control of tremor. Thus, cerebellar dysfunction in these patients can be differentially modulated with optimal versus supra-therapeutic stimulation. The cerebellar movement disorder of essential tremor is due to a typical cerebellar deficit, not to trembling extremities. We hypothesize that deep brain stimulation affects two major regulating circuits: the cortico-thalamo-cortical loop for tremor reduction and the cerebello-thalamo-cortical pathway for ataxia reduction (stimulation on) and ataxia induction (supra-therapeutic stimulation).


Movement Disorders | 2012

Stimulation site within the MRI-defined STN predicts postoperative motor outcome.

Fritz Wodarg; Jan Herzog; René Reese; Daniela Falk; M. O. Pinsker; Frank Steigerwald; Olav Jansen; Günther Deuschl; H. Maximillian Mehdorn; Jens Volkmann

High‐frequency stimulation of the subthalamic nucleus (STN‐HFS) is highly effective in treating motor symptoms in Parkinsons disease (PD) and medication side effects as well as in improving quality of life. Despite preoperative screening for patients as eligible candidates for this treatment, electrode position may furthermore influence treatment quality. Here, we investigated the relationship between the anatomical site of stimulation within the MRI‐defined STN and the outcome of PD patients after STN‐HFS. In 30 PD patients with bilateral STN stimulation, we retrospectively defined the boundaries of the STN within the axial target plane of the stereotactic T2‐weighted MRI and determined the position of the active electrode contact in relation to the border of the STN. The position of the active contact within the STN was the only variable to predict the outcome of STN stimulation. In contrast, covariates such as age, disease duration, symptom severity, and response to levodopa had no effect. The lateral position of the stimulation contact within the STN led to significantly better clinical improvement, lower stimulation parameters, and less need for postoperative dopaminergic medication. The outcome of patients with stimulation contacts within the medial region of the STN was significantly worse. Precise targeting of the lateral region of the STN is essential for achieving sufficient stimulation efficacy. Preoperative T2‐weighted MRI might be a useful component of the targeting procedure to improve the outcome of PD patients.


Brain | 2014

Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor

Sergiu Groppa; Jan Herzog; Daniela Falk; Christian Riedel; G. Deuschl; Jens Volkmann

Postural tremor is the leading symptom in essential tremor, but in some cases intention tremor and limb ataxia emerge and can become highly disabling features. Deep brain stimulation of the thalamus or subthalamic white matter improve tremor and ataxia; however, the underlying network mechanisms are enigmatic. To elucidate the mechanisms of deep brain stimulation in essential tremor, we pursued a multimodal approach combining kinematic measures of reach-to-grasp movements, clinical assessments, physiological measures of neuronal excitability and probabilistic tractography from diffusion tensor imaging. Seven patients with essential tremor (age 62.9 ± 10.3 years, two females) received thalamic deep brain stimulation and a clinical examination of severity of limb tremor and ataxia at off stimulation, using therapeutic and supratherapeutic stimulation parameters. A reach-to-grasp task based on acoustic cues was also performed. To examine the electrical properties of target structures, we determined the chronaxie of neural elements modulated. A control group of 13 healthy subjects (age 56 ± 7.6 years, five females) underwent whole-brain diffusion tensor imaging at 3 T. Probabilistic tractography was applied in healthy subjects from seeds in cerebellum and midbrain to reconstruct the connectivity pattern of the subthalamic area. The positions of stimulation electrodes in patients were transferred into probability maps and connectivity values were correlated to clinical outcome measures. Therapeutic stimulation improved ataxia and tremor mainly during the target period of the reaching paradigm (63% reduction compared with off stimulation). Notably the acceleration (29%) and deceleration periods (41%) were improved. By contrast, supratherapeutic stimulation worsened ataxia during the deceleration period with a 55% increase of spatial variability, while maintaining near complete suppression of tremor. Chronaxie measures were in the range of rapidly-conducting myelinated fibres with significantly different values for the anti-tremor effect of therapeutic stimulation (27 s) and the pro-ataxic effect of supratherapeutic stimulation (52 s). The degree of connectivity to the dentato-thalamic tract at the stimulating electrode correlated significantly with the reduction of tremor in the therapeutic condition. Our data suggest that stimulation induced tremor reduction and induction of ataxia by supratherapeutic stimulation are mediated by different fibre systems. Probalistic tractography identified the dentato-thalamic tract as a likely target of tremor suppression. Stimulation-induced ataxia may be caused by additional recruitment of adjacent fibre systems at higher amplitudes. Stimulation with short pulse duration may help to increase the therapeutic window and focus on the anti-tremor effect.


Movement Disorders | 2011

Modulation of gait coordination by subthalamic stimulation improves freezing of gait

Alfonso Fasano; Jan Herzog; Elena Seifert; Henning Stolze; Daniela Falk; René Reese; Jens Volkmann; Günther Deuschl

The effect of subthalamic deep brain stimulation on gait coordination and freezing of gait in patients with Parkinsons disease is incompletely understood. The purpose of this study was to investigate the extent to which modulation of symmetry and coordination between legs by subthalamic deep brain stimulation alters the frequency and duration of freezing of gait in patients with Parkinsons disease. We recruited 13 post‐subthalamic deep brain stimulation patients with Parkinsons disease with off freezing of gait and evaluated them in the following 4 conditions: subthalamic deep brain stimulation on (ON) and stimulation off (OFF), 50% reduction of stimulation voltage for the leg with shorter step length (worse side reduction) and for the leg with longer step length (better side reduction). Gait analysis was performed on a treadmill and recorded by an optoelectronic analysis system. We measured frequency and duration of freezing of gait episodes. Bilateral coordination of gait was assessed by the Phase Coordination Index, quantifying the ability to generate antiphase stepping. From the OFF to the ON state, freezing of gait improved in frequency (2.0 ± 0.4 to 1.4 ± 0.5 episodes) and duration (12.2 ± 2.6 to 2.6 ± 0.8 seconds; P = .005). Compared with the ON state, only better side reduction further reduced freezing of gait frequency (0.2 ± 0.2) and duration of episodes (0.2 ± 0.2 seconds; P = .03); worse side reduction did not change frequency (1.3 ± 0.4) but increased freezing of gait duration (5.2 ± 2.1 seconds). The better side reduction–associated improvements were accompanied by normalization of gait coordination, as measured by phase coordination index (16.5% ± 6.0%), which was significantly lower than in the other 3 conditions. Reduction of stimulation voltage in the side contralateral to the leg with longer step length improves frequency and duration of freezing of gait through normalization of gait symmetry and coordination in subthalamic deep brain stimulation patients with Parkinsons disease. This identifies poor leg coordination as a risk factor for causing freezing of gait.


Movement Disorders | 2015

Subthalamic nucleus stimulation improves Parkinsonian gait via brainstem locomotor centers.

Peter H. Weiss; Jan Herzog; Monika Pötter‐Nerger; Daniela Falk; Hans Herzog; Günther Deuschl; Jens Volkmann; Gereon R. Fink

Subthalamic deep brain stimulation (STN‐DBS) can ameliorate gait disturbances in Parkinsons disease (PD). Using motor imagery and positron emission tomography (PET), we investigated how STN‐DBS interacts with supraspinal locomotor centers in PD.


Movement Disorders | 2015

Uncoupling of dopaminergic and subthalamic stimulation: Life-threatening DBS withdrawal syndrome.

Sigrid Reuter; Günther Deuschl; Daniela Falk; Maximilian Mehdorn; Karsten Witt

Deep brain stimulation (DBS) in therapy for advanced Parkinsons disease (PD) is an accepted treatment. Infections of the system and other complications occasionally result in hardware removal and subsequent medical treatment alone for months.


European Journal of Neurology | 2017

Effect of high‐frequency subthalamic neurostimulation on gait and freezing of gait in Parkinson's disease: a systematic review and meta‐analysis

Christian Schlenstedt; Ali S. Shalash; Muthuraman Muthuraman; Daniela Falk; Karsten Witt; Günther Deuschl

The aim of this meta‐analysis was to summarize the short‐ and long‐term effects of bilateral deep brain stimulation of the subthalamic nucleus (STN‐DBS) on gait and freezing of gait (FOG) in Parkinsons disease and to detect predictors of post‐stimulation outcome. A comprehensive review of the literature was conducted up to October 2015 using Medline Ovid databases for studies analyzing the effect of bilateral STN‐DBS on FOG and/or gait. Sixteen studies with available data for the gait item (no. 29) of the Unified Parkinsons Disease Rating Scale (UPDRS) and six studies with the FOG item (no. 14) were included. Data were summarized for the following follow‐up periods: 6–15, 24–48 and >48 months. For the medication (Med)‐Off/stimulation(Stim)‐On condition compared with baseline Med‐Off, STN‐DBS significantly improved gait on average from 2.43 to 0.96, 2.53 to 1.31 and 2.56 to 1.40 points at 6–15, 24–48 and >48 months, respectively (P < 0.05). Pre‐operative levodopa responsiveness of UPDRS‐III and Med‐Off severity of gait were the predictors of this beneficial effect. STN‐DBS significantly improved FOG for the Med‐Off/Stim‐On condition compared with baseline on average from 2.26 to 0.82, 2.43 to 1.13 and 2.48 to 1.38 points at 6–15, 24–48 and >48 months, respectively (P < 0.05). There was no significant effect in the Med‐On/Stim‐On condition. This meta‐analysis showed a robust improvement of gait and FOG by STN‐DBS for more than 4 years in the Med‐Off/Stim‐On condition. No beneficial effect was found for the On state of medication. Pre‐operative levodopa responsiveness of global motor performance (UPDRS‐III) is the strongest predictor of the effect of deep brain stimulation on gait.

Collaboration


Dive into the Daniela Falk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfonso Fasano

Toronto Western Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge