Daniela Fico
University of Salento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Fico.
Journal of Pharmaceutical and Biomedical Analysis | 2014
Giuseppe E. De Benedetto; Daniela Fico; Antonio Pennetta; Cosimino Malitesta; Giuseppe Nicolardi; Dario Domenico Lofrumento; Francesco De Nuccio; Velia La Pesa
A fast and simple isocratic high-performance liquid chromatography method for the determination of 3,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE), dopamine (DA), and serotonin (5-HT) in homogenate samples of mouse striatum employing the direct fluorescence of the neurotransmitters is described. The method has been optimized and validated. The analytes were separated in 15min on a reversed-phase column (C18) with acetate buffer (pH 4.0, 12mM)-methanol (86:14, v/v) as mobile phase; the flow rate was 1ml/min. The fluorescence measurements were carried out at 320nm with excitation at 279nm. The calibration curve for DA was linear up to about 2.5μg/ml, with a coefficient of determination (r(2)) of 0.9995 with a lower limit of quantification of 0.031μg/ml. Since the procedure does not involve sample pre-purification or derivatisation, the recovery ranged from 97% to 102% and relative standard deviation (RSD) was better than 2.9%, the use of the internal standard is not mandatory, further simplifying the method. Similar performance was obtained for the other analytes. As a result, thanks to its simplicity, rapidity and adequate working range, the method can be used for the determination of 3,4-dihydroxyphenylacetic acid, dopamine, norepinephrine and serotonin in animal tissues. An experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson-like disease has been used to demonstrate the method is fit-for-purpose.
New Journal of Chemistry | 2011
Annarosa Mangone; Giuseppe E. De Benedetto; Daniela Fico; Lorena Carla Giannossa; Rocco Laviano; Luigia Sabbatini; Inez Dorothé van der Werf; A. Traini
The investigation was aimed at defining the compositional and structural characteristics of a group of monochrome blue faiences recovered in Pompeii to assess provenance on the basis of their technological features. Different complementary analytical techniques were used: Scanning Electron Microscopy (SEM) to investigate the morphological aspects of the samples and in particular of the interfaces, micro-Raman Spectroscopy and XRPD to identify crystalline phases and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) to assess the elemental composition due to its sensitivity to a wide range of elements and the adequate lateral resolution. Statistical data treatment of the elemental concentrations of both the ceramic bodies and the glazes allowed us to classify the objects into compositional groups and to verify the previously established archaeological hypothesis suggesting an Egyptian provenance for faience of Pompeii.
Talanta | 2016
Marianna Faraco; Daniela Fico; Antonio Pennetta; Giuseppe E. De Benedetto
This work presents an analytical procedure based on gas chromatography-mass spectrometry which allows the determination of aldoses (glucose, mannose, galactose, arabinose, xylose, fucose, rhamnose) and chetoses (fructose) in plant material. One peak for each target carbohydrate was obtained by using an efficient derivatization employing methylboronic acid and acetic anhydride sequentially, whereas the baseline separation of the analytes was accomplished using an ionic liquid capillary column. First, the proposed method was optimized and validated. Successively, it was applied to identify the carbohydrates present in plant material. Finally, the procedure was successfully applied to samples from a XVII century painting, thus highlighting the occurrence of starch glue and fruit tree gum as polysaccharide materials.
Frontiers in Microbiology | 2017
Marco Fondi; Eva Pinatel; Adelfia Talà; Fabrizio Damiano; Clarissa Consolandi; Benedetta Mattorre; Daniela Fico; Mariangela Testini; Giuseppe E. De Benedetto; Luisa Siculella; Gianluca De Bellis; Pietro Alifano; Clelia Peano
In this study we have applied an integrated system biology approach to characterize the metabolic landscape of Streptomyces ambofaciens and to identify a list of potential metabolic engineering targets for the overproduction of the secondary metabolites in this microorganism. We focused on an often overlooked growth period (i.e., post-first rapid growth phase) and, by integrating constraint-based metabolic modeling with time resolved RNA-seq data, we depicted the main effects of changes in gene expression on the overall metabolic reprogramming occurring in S. ambofaciens. Moreover, through metabolic modeling, we unraveled a set of candidate overexpression gene targets hypothetically leading to spiramycin overproduction. Model predictions were experimentally validated by genetic manipulation of the recently described ethylmalonyl-CoA metabolic node, providing evidence that spiramycin productivity may be increased by enhancing the carbon flow through this pathway. The goal was achieved by over-expressing the ccr paralog srm4 in an ad hoc engineered plasmid. This work embeds the first metabolic reconstruction of S. ambofaciens and the successful experimental validation of model predictions and demonstrates the validity and the importance of in silico modeling tools for the overproduction of molecules with a biotechnological interest. Finally, the proposed metabolic reconstruction, which includes manually refined pathways for several secondary metabolites with antimicrobial activity, represents a solid platform for the future exploitation of S. ambofaciens biotechnological potential.
Chemical Papers | 2015
Lorena Carla Giannossa; Daniela Fico; Antonio Pennetta; Annarosa Mangone; Rocco Laviano; Giuseppe E. De Benedetto
A multi-analytical approach was used to investigate Roman lead-glazed ceramic artefacts from archaeological excavations at Pompeii and Herculaneum (Italy) aiming at defining the production technology of both glaze and ceramic body, by way of integrated investigations. The chemical, structural, and micro-morphological characterisations were performed using a combination of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), optical microscopy (OM), scanning electron microscopy (SEM), and micro-Raman spectroscopy. Fragments of artefacts (skyphoi, oil lamps, bowls, askoi, amphorae, krateres) of great historical and archaeological interest were sampled. LA-ICP-MS was used to determine the elemental composition by virtue of its effective lateral resolution, its ability to detect most elements and also to analyse comparably small samples. All the archaeological objects were coated with a lead-based glaze produced using a lead oxide-plus-quartz mixture, with sodium/potassium feldspars added as a flux and two different metals used: copper and iron. Two types of ceramic pastes have been identified, but chemometric techniques support the hypothesis of a Campanian provenance for the raw materials. Degradation phenomena such as the partial devitrification of the glaze, i.e. the slow structural reorganisation towards stable crystalline phases, and the leaching by mineral dissolution in the soil, were determined.
Methods of Molecular Biology | 2008
Daniela Fico; Antonio Pennetta; Giuseppe E. De Benedetto
This chapter illustrates the usefulness of capillary electrophoresis (CE) for the analysis of amino acids, and both normal and chiral separations are covered. In order to provide a general description of the main results and challenges in the biomedical field, some relevant applications and reviews on CE of amino acids are tabulated. Furthermore, some detailed experimental procedures are shown, regarding the CE analysis of amino acids in body fluids, in microdialysate, and released upon hydrolysis of proteins. In particular, the protocols will deal with the following compounds: (1) underivatized aminoacids in blood; (2) γ-Aminobutyric acid, glutamate, and L-Aspartate derivatized with Naphthalene-2,3-dicarboxaldehyde; (3) hydrolysate from bovine serum albumine derivatized with phenylisothiocyanate. By examining these applications on real matrices, the capillary electrophoresis efficiency as tool for Amino Acid analysis can be ascertained.
ACS Omega | 2018
Matteo Calcagnile; Simona Bettini; Fabrizio Damiano; Adelfia Talà; Salvatore Maurizio Tredici; Rosanna Pagano; Marco Di Salvo; Luisa Siculella; Daniela Fico; Giuseppe E. De Benedetto; Ludovico Valli; Pietro Alifano
Spiramycin is a macrolide antibiotic and antiparasitic that is used to treat toxoplasmosis and various other infections of soft tissues. In the current study, we evaluated the effects of α-cyclodextrin, β-cyclodextrin, or methyl-β-cyclodextrin supplementation to a synthetic culture medium on biomass and spiramycin production by Streptomyces ambofaciens ATCC 23877. We found a high stimulatory effect on spiramycin production when the culture medium was supplemented with 0.5% (w/v) methyl-β-cyclodextrin, whereas α-cyclodextrin or β-cyclodextrin weakly enhanced antibiotic yields. As the stimulation of antibiotic production could be because of spiramycin complexation with cyclodextrins with effects on antibiotic stability and/or efflux, we analyzed the possible formation of complexes by physical–chemical methods. The results of Job plot experiment highlighted the formation of a nonhost@guest complex methyl-β-cyclodextrin@spiramycin I in the stoichiometric ratio of 3:1 while they excluded the formation of complex between spiramycin I and α- or β-cyclodextrin. Fourier-transform infrared spectroscopy measurements were then carried out to characterize the methyl-β-cyclodextrin@spiramycin I complex and individuate the chemical groups involved in the binding mechanism. These findings may help to improve the spiramycin fermentation process, providing at the same time a new device for better delivery of the antibiotic at the site of infection by methyl-β-cyclodextrin complexation, as it has been well-documented for other bioactive molecules.
Environmental Science and Pollution Research | 2017
Inez Dorothé van der Werf; Alessandro Monno; Daniela Fico; Giulia Germinario; Giuseppe E. De Benedetto; Luigia Sabbatini
The Earth Sciences Museum of the University of Bari Aldo Moro (Italy) exhibits a wide collection of amber samples. These have been catalogued as Baltic amber (succinite), Sicilian amber (simetite), amber from New Jersey, Apennine amber and New Zealand copaline. However, some samples revealed to be erroneously classified as a consequence of incorrect information on the labels or in the museum catalogue. This may be due to historical forgeries, as is often the case of simetite, or to a possible exchange of samples that probably occurred during the displacement of the museum collection from the Central University Building to the Geo-environmental and Earth Sciences Department. In this study, all amber samples were systematically investigated with long wave UV rays, attenuated total reflectance (ATR), Fourier transform infrared (FTIR) spectroscopy and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) using on-line thermally assisted hydrolysis and methylation. The combined use of the latter two analytical techniques allowed for a complete characterisation of the ambers, whereas UV fluorescence showed to be of little value. The compositional data could be used for a better classification and valorisation of the amber samples of the museum collection. Two of the purported amber samples were shown to be copal, while four others are ambers but had been wrongly classified. Moreover, for some samples, it could be established that they had been subjected to treatment with a drying oil.
Metabolic Engineering | 2018
Adelfia Talà; Fabrizio Damiano; Giuseppe Gallo; Eva Pinatel; Matteo Calcagnile; Mariangela Testini; Daniela Fico; Daniela Rizzo; Alberto Sutera; Giovanni Renzone; Andrea Scaloni; Gianluca De Bellis; Luisa Siculella; Giuseppe E. De Benedetto; Anna Maria Puglia; Clelia Peano; Pietro Alifano
Pirins are evolutionarily conserved iron-containing proteins that are found in all kingdoms of life, and have been implicated in diverse molecular processes, mostly associated with cellular stress. In the present study, we started from the evidence that the insertional inactivation of pirin-like gene SAM23877_RS18305 (pirA) by ΦC31 Att/Int system-based vectors in spiramycin-producing strain Streptomyces ambofaciens ATCC 23877 resulted in marked effects on central carbon and energy metabolism gene expression, high sensitivity to oxidative injury and repression of polyketide antibiotic production. By using integrated transcriptomic, proteomic and metabolite profiling, together with genetic complementation, we here show that most of these effects could be traced to the inability of the pirA-defective strain to modulate beta-oxidation pathway, leading to an unbalanced supply of precursor monomers for polyketide biosynthesis. Indeed, in silico protein-protein interaction modeling and in vitro experimental validation allowed us to demonstrate that PirA is a novel redox-sensitive negative modulator of very long-chain acyl-CoA dehydrogenase, which catalyzes the first committed step of the beta-oxidation pathway.
Journal of Automated Methods & Management in Chemistry | 2018
Daniela Fico; E. Margapoti; Antonio Pennetta; G. E. De Benedetto
The chemical characterization of materials used in works of art is extremely useful for gaining a better knowledge of the artistic heritage and to guarantee its preservation. A derivatization GC/MS procedure for the identification of proteins in a microsample from painted works of art has been optimized. The amino acid fraction is derivatized using anhydrous dimethylformamide (DMF) as solvent instead of pyridine (Py), commonly used to facilitate the reaction. Although pyridine is often considered a silylation catalyst, there are many instances in which silylation reactions actually are slower in pyridine than other solvents. In addition, pyridine also may have other undesirable effects such as the promotion of secondary products and other chromatographic anomalies. Using DMF, the formation of artifacts is limited and the derivatization yield of hydrophilic amino acids such as proline and hydroxyproline has improved, thus making the identification of organic paint media more straightforward. The method has been validated and successfully applied to identify the binder of the sample taken from the pictorial cycle of the 12th century monastery of Santa Maria delle Cerrate (Lecce, Italy), thus highlighting the use of eggs as a binding medium.