Daniela Fliegner
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Fliegner.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010
Daniela Fliegner; Carola Schubert; Adam Penkalla; Henning Witt; Georgios Kararigas; Elke Dworatzek; Eike Staub; Peter Martus; Patricia Ruiz Noppinger; Ulrich Kintscher; Jan Åke Gustafsson; Vera Regitz-Zagrosek
We investigated sex differences and the role of estrogen receptor-beta (ERbeta) on myocardial hypertrophy in a mouse model of pressure overload. We performed transverse aortic constriction (TAC) or sham surgery in male and female wild-type (WT) and ERbeta knockout (ERbeta(-/-)) mice. All mice were characterized by echocardiography and hemodynamic measurements and were killed 9 wk after surgery. Left ventricular (LV) samples were analyzed by microarray profiling, real-time RT-PCR, and histology. After 9 wk, WT males showed more hypertrophy and heart failure signs than WT females. Notably, WT females developed a concentric form of hypertrophy, while males developed eccentric hypertrophy. ERbeta deletion augmented the TAC-induced increase in cardiomyocyte diameter in both sexes. Gene expression profiling revealed that WT male hearts had a stronger induction of matrix-related genes and a stronger repression of mitochondrial genes than WT female hearts. ERbeta(-/-) mice exhibited a different transcriptional response. ERbeta(-/-)/TAC mice of both sexes exhibited induction of proapoptotic genes with a stronger expression in ERbeta(-/-) males. Cardiac fibrosis was more pronounced in male WT/TAC than in female mice. This difference was abolished in ERbeta(-/-) mice. The number of apoptotic nuclei was increased in both sexes of ERbeta(-/-)/TAC mice, most prominent in males. Female sex offers protection against ventricular chamber dilation in the TAC model. Both female sex and ERbeta attenuate the development of fibrosis and apoptosis, thus slowing the progression to heart failure.
International Journal of Cardiology | 2013
Ana Queiros; Claudia Eschen; Daniela Fliegner; Georgios Kararigas; Elke Dworatzek; Christina Westphal; Hugo Sanchez Ruderisch; Vera Regitz-Zagrosek
BACKGROUND In pressure overload, profibrotic gene expression and cardiac fibrosis are more pronounced in males than in females. Sex-specific and estrogen-dependent regulation of microRNAs (miRNAs), such as miR-21, may be a potential mechanism leading to sex differences in fibrosis. OBJECTIVES To analyze the influence of sex, estrogen, and estrogen receptor beta (ERβ) on the expression of miR-21 and to identify additional miRNAs potentially involved in sex-specific pressure overload-induced cardiac remodeling. METHODS The sex-specific regulation of fibrosis-related miRNAs was analyzed in male and female wild type and ERβ-deficient mice after transverse aortic constriction (TAC), in rat fibroblasts, and in a cardiomyocyte-like cell line. RESULTS We report the sex-specific expression of functionally-related miR-21, -24, -27a, -27b, 106a, -106b and the regulation of their expression by estrogen in a sex-specific manner. These effects were abolished in ERβ-deficient mice. We demonstrate the presence of common functional target sites for these miRNAs on three repressors of the mitogen-activated protein kinase signaling pathway, i.e. Rasa1, Rasa2 and Spry1, which may all lead to cardiac fibrosis. As expected, transfection with miRNA mimics targeting these repressors induced ERK1/2 phosphorylation. CONCLUSIONS Estrogen regulates a network of miRNAs in a sex-specific manner via ERβ. Our data suggest that the sex-specific expression of these miRNAs may be related to sex differences in fibrosis after pressure overload.
Physiological Genomics | 2011
Georgios Kararigas; Daniela Fliegner; Jan Åke Gustafsson; Vera Regitz-Zagrosek
Cardiac hypertrophy, the adaptive response of the heart to overload, is a major risk factor for heart failure and sudden death. Estrogen (E2) and estrogen receptor beta (ERbeta) offer protection against hypertrophy and in the transition to heart failure. However, the underlying pathways remain incompletely defined. We employed a publicly available microarray dataset of female wild-type (WT) and ERbeta knockout (BERKO) mice subjected to pressure overload-induced hypertrophy to perform a systematic investigation of the mechanisms involved in the protection conferred by the E2/ERbeta axis. We show that considerably more genes were modulated in response to pressure overload in BERKO mice than in WT mice. The majority of the identified candidates in BERKO mice were induced, while those in WT mice were repressed. Pathway analysis revealed a similar pattern. This study is the first to demonstrate that the lack of ERbeta led to a significant increase of inflammatory pathways. Mitochondrial bioenergetics- and oxidative stress-related pathways were also modulated. In conclusion, ERbeta acquires the role of gatekeeper of the genomic response of the heart to pressure overload-induced hypertrophy. This may offer the molecular explanation for its cardioprotective role. We consider the present study to be a useful resource and that it will contribute to downstream functional analysis and to the characterization of pathways with previously unknown role in hypertrophy.
BMC Systems Biology | 2012
Anja Karlstädt; Daniela Fliegner; Georgios Kararigas; Hugo Sanchez Ruderisch; Vera Regitz-Zagrosek; Hermann-Georg Holzhütter
BackgroundAvailability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output.ResultsHere we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes.ConclusionsCardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.
Cardiovascular Research | 2014
Elke Dworatzek; Shokoufeh Mahmoodzadeh; Carola Schubert; Christina Westphal; Joachim Leber; Angelika Kusch; Georgios Kararigas; Daniela Fliegner; Maryline Moulin; Renée Ventura-Clapier; Jan Åke Gustafsson; Mercy M. Davidson; Duska Dragun; Vera Regitz-Zagrosek
AIMS Oestrogen receptor alpha (ERα) and beta (ERβ) are involved in the regulation of pathological myocardial hypertrophy (MH). We hypothesize that both ER are also involved in physiological MH. Therefore, we investigated the role of ER in exercise-induced physiological MH in loss-of-function models and studied potential mechanisms of action. METHODS AND RESULTS We performed 1 and 8 weeks of voluntary cage wheel running (VCR) with male and female C57BL/6J wild-type (WT), ERα- and ERβ-deleted mice. In line with other studies, female WT mice ran more than males (P ≤ 0.001). After 8 weeks of VCR, both sexes showed an increase in left ventricular mass (females: P ≤ 0.01 and males: P ≤ 0.05) with more pronounced MH in females (P < 0.05). As previously shown, female ERα-deleted mice run less than female WT mice (P ≤ 0.001). ERβ-deleted mice showed similar running performance as WT mice (females vs. male: P ≤ 0.001), but did not develop MH. Only female WT mice showed an increase in phosphorylation of serine/threonine kinase (AKT), ERK1/2, p38-mitogen-activated protein kinase (MAPK), and ribosomal protein s6, as well as an increase in the expression of key regulators of mitochondrial function and mitochondrial respiratory chain proteins (complexes I, III, and V) after VCR. However, ERβ deletion abolished all observed sex differences. Mitochondrial remodelling occurred in female WT-VCR mice, but not in female ERβ-deleted mice. CONCLUSION The sex-specific response of the heart to exercise is modulated by ERβ. The greater increase in physiological MH in females is mediated by induction of AKT signalling, MAPK pathways, protein synthesis, and mitochondrial adaptation via ERβ.
PLOS ONE | 2012
Christina Westphal; Carola Schubert; Katja Prelle; Adam Penkalla; Daniela Fliegner; George Petrov; Vera Regitz-Zagrosek
The aim of this study was to investigate the effects of 17β-estradiol (E2), the selective ERα agonist 16α-LE2, and the selective estrogen receptor modulator (SERM) raloxifene on remodeling processes during the development of myocardial hypertrophy (MH) in a mouse model of pressure overload. Myocardial hypertrophy in ovariectomized female C57Bl/6J mice was induced by transverse aortic constriction (TAC). Two weeks after TAC, placebo treated mice developed left ventricular hypertrophy and mild systolic dysfunction. Estrogen treatment, but not 16α-LE2 or raloxifene reduced TAC induced MH compared to placebo. E2, 16α-LE2 and raloxifene supported maintenance of cardiac function in comparison with placebo. Nine weeks after induction of pressure overload, MH was present in all TAC groups, most pronounced in the raloxifene treated group. Ejection fraction (EF) was decreased in all animals. However, 16α-LE2 treated animals showed a smaller reduction of EF than animals treated with placebo. E2 and 16α-LE2, but not raloxifene diminished the development of fibrosis and reduced the TGFβ and CTGF gene expression. Treatment with E2 or 16α-LE2 but not with raloxifene reduced survival rate after TAC significantly in comparison with placebo treatment. In conclusion, E2 and 16α-LE2 slowed down the progression of MH and reduced systolic dysfunction after nine weeks of pressure overload. Raloxifene did not reduce MH but improved cardiac function two weeks after TAC. However, raloxifene was not able to maintain EF in the long term period.
Journal of Proteome Research | 2014
Georgios Kararigas; Daniela Fliegner; Stefanie Forler; Oliver Klein; Carola Schubert; Jan Åke Gustafsson; Joachim Klose; Vera Regitz-Zagrosek
In pressure overload (PO), sex differences in humans and rodents have been well documented and estrogen receptor (ER) β is considered cardioprotective. However, the underlying mechanisms are poorly understood. Our aim was to investigate sex- and ERβ-specific effects in protein abundance in PO employing a 2-dimensional gel electrophoresis/mass spectrometry-based proteomics approach. We hypothesized major sex differences and ERβ-specific alterations consistent with cardioprotection in females. Two-month old male and female wild-type (WT) and ERβ knockout (BERKO) mice were subjected to transverse aortic constriction (TAC) for 9 weeks (n = 4/group). In WT mice, hypertrophy was significantly more pronounced in males than females, while this sex difference was abolished in BERKO mice. We found 82 protein spots modulated between TAC and sham in WT males, 31 in WT females, 114 in BERKO males, and 87 in BERKO females (P ≤ 0.05). Our analysis revealed in WT and BERKO females an altered pattern of various proteins involved in structure and suggests a link between female sex and cytoskeletal integrity. In males, a set of proteins was identified that associate with mitochondrial bioenergetics and energy supply. We confirmed protein regulation by immunoblotting analysis. In conclusion, the proteomic response of the heart to PO is significantly modulated by ERβ and sex. We put forward that the observed differences may identify sex-specific targets for the treatment of heart failure, contributing toward more personalized medical care.
European Journal of Heart Failure | 2008
Daniela Fliegner; Dirk Westermann; Alexander Riad; Carola Schubert; Eva Becher; Jens Fielitz; Carsten Tschöpe; Vera Regitz-Zagrosek
Peroxisome proliferator activated receptors (PPARs) are key regulators for cardiac energy metabolism after myocardial injury. We hypothesized, that PPARs are regulated in myocardial infarction (MI) and their activity is modulated by angiotensin receptor blockers (ARBs).
Handbook of experimental pharmacology | 2013
Shokoufeh Mahmoodzadeh; Daniela Fliegner; Elke Dworatzek
Clinical findings show sex differences in the manifestation of a number of cardiovascular diseases (CVD). However, the underlying molecular mechanisms are incompletely understood. Multiple animal models suggest sex differences in the manifestation of CVD, and provide strong experimental evidence that different major pathways are regulated in a sex-specific manner. In most animal studies females display a lower mortality, less severe hypertrophy, and better preserved cardiac function compared with male counterparts. The data support the hypothesis that female sex and/or the sex hormone estrogen (17β-estradiol; E2) may contribute to the sexual dimorphism in the heart and to a better outcome of cardiac diseases in females. To improve our understanding of the sex-based molecular and cellular mechanisms of CVD and to develop new therapeutic strategies, the use of appropriate animal models is essential. This review highlights recent findings from animal models relevant for studying the mechanisms of sexual dimorphisms in the healthy and diseased heart, focusing on physiological hypertrophy (exercise), pathological hypertrophy (volume and pressure overload induced hypertrophy), and heart failure (myocardial infarction). Furthermore, the potential effects of E2 in these models will be discussed.
Journal of Cellular and Molecular Medicine | 2017
Yanti Octavia; Georgios Kararigas; Martine de Boer; Ihsan Chrifi; Rinrada Kietadisorn; Melissa Swinnen; Hans Duimel; Fons Verheyen; Maarten M. Brandt; Daniela Fliegner; Caroline Cheng; Stefan Janssens; Dirk J. Duncker; An L. Moens
The use of doxorubicin (DOXO) as a chemotherapeutic drug has been hampered by cardiotoxicity leading to cardiomyopathy and heart failure. Folic acid (FA) is a modulator of endothelial nitric oxide (NO) synthase (eNOS), which in turn is an important player in diseases associated with NO insufficiency or NOS dysregulation, such as pressure overload and myocardial infarction. However, the role of FA in DOXO‐induced cardiomyopathy is poorly understood. The aim of this study was to test the hypothesis that FA prevents DOXO‐induced cardiomyopathy by modulating eNOS and mitochondrial structure and function. Male C57BL/6 mice were randomized to a single dose of DOXO (20 mg/kg intraperitoneal) or sham. FA supplementation (10 mg/day per oral) was started 7 days before DOXO injection and continued thereafter. DOXO resulted in 70% mortality after 10 days, with the surviving mice demonstrating a 30% reduction in stroke volume compared with sham groups. Pre‐treatment with FA reduced mortality to 45% and improved stroke volume (both P < 0.05 versus DOXO). These effects of FA were underlain by blunting of DOXO‐induced cardiomyocyte atrophy, apoptosis, interstitial fibrosis and impairment of mitochondrial function. Mechanistically, pre‐treatment with FA prevented DOXO‐induced increases in superoxide anion production by reducing the eNOS monomer:dimer ratio and eNOS S‐glutathionylation, and attenuated DOXO‐induced decreases in superoxide dismutase, eNOS phosphorylation and NO production. Enhancing eNOS function by restoring its coupling and subsequently reducing oxidative stress with FA may be a novel therapeutic approach to attenuate DOXO‐induced cardiomyopathy.