Daniela Gast
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Gast.
The FASEB Journal | 2002
Paul Gutwein; Sabine Mechtersheimer; Svenja Riedle; Alexander Stoeck; Daniela Gast; Safwan Joumaa; Hanswalter Zentgraf; Mina Fogel; D. Peter Altevogt
Cells can release membrane components in a soluble form and as membrane vesicles. L1, an important molecule for cell migration of neural and tumor cells, is released by membrane‐proximal cleavage, and soluble L1 promotes cell migration. Release of L1 is enhanced by shedding inducers such as phorbol ester and pervanadate, but it is also enhanced by depletion of cellular cholesterol with methyl‐β‐cyclodextrin (MCD). How such different compounds can induce shedding is presently unknown. We show here that ADAM10 is involved in L1 cleavage, which occurs at the cell surface and in the Golgi apparatus. MCD and pervanadate treatment induced the release of microvesicles containing full‐length L1 and the active form of ADAM10. L1 cleavage occurred in isolated vesicles. L1‐containing microvesicles could trigger haptotactic cell migration. Only the neural L1 form carrying the RSLE signal for clathrin‐dependent endocytosis was recruited and cleaved in vesicles. Phorbol ester treatment activated L1 cleavage predominantly at the cell surface. Our results provide evidence for two pathways of L1 cleavage, based on ADAM10 localization, that can be activated differentially: 1) direct cleavage at the cell surface, and 2) release and cleavage in secretory vesicles most likely derived from the Golgi apparatus. The findings establish a novel role for ADAM10 as a vesicle‐based protease.
Clinical Cancer Research | 2005
Paul Gutwein; Alexander Stoeck; Svenja Riedle; Daniela Gast; Steffen Runz; Thomas P. Condon; Alexander Marmé; Minh-Chau Phong; Otwin Linderkamp; Alexander Skorokhod; Peter Altevogt
Purpose: The L1 adhesion molecule (CD171) is overexpressed in human ovarian and endometrial carcinomas and is associated with bad prognosis. Although expressed as a transmembrane molecule, L1 is released from carcinoma cells in a soluble form. Soluble L1 is present in serum and ascites of ovarian carcinoma patients. We investigated the mode of L1 cleavage and the function of soluble L1. Experimental Design: We used ovarian carcinoma cell lines and ascites from ovarian carcinoma patients to analyze soluble L1 and L1 cleavage by Western blot analysis and ELISA. Results: We find that in ovarian carcinoma cells the constitutive cleavage of L1 proceeds in secretory vesicles. We show that apoptotic stimuli like C2-ceramide, staurosporine, UV irradiation, and hypoxic conditions enhance L1-vesicle release resulting in elevated levels of soluble L1. Constitutive cleavage of L1 is mediated by a disintegrin and metalloproteinase 10, but under apoptotic conditions multiple metalloproteinases are involved. L1 cleavage occurs in two types of vesicles with distinct density features: constitutively released vesicles with similarity to exosomes and apoptotic vesicles. Both types of L1-containing vesicles are present in the ascites fluids of ovarian carcinoma patients. Soluble L1 from ascites is a potent inducer of cell migration and can trigger extracellular signal-regulated kinase phosphorylation. Conclusions: We suggest that tumor-derived vesicles may be an important source for soluble L1 that could regulate tumor cell function in an autocrine/paracrine fashion.
Cancer Research | 2006
Matthias J. E. Arlt; Ilse Novak-Hofer; Daniela Gast; Verena Gschwend; Gerhard Moldenhauer; Jürgen Grünberg; Michael Honer; P. August Schubiger; Peter Altevogt; Achim Krüger
The L1 cell adhesion molecule is implicated in the control of proliferation, migration, and invasion of several tumor cell types in vitro. Recently, L1 overexpression was found to correlate with tumor progression of ovarian carcinoma, one of the most common causes of cancer-related deaths in gynecologic malignant diseases. To evaluate L1 as a potential target for ovarian cancer therapy, we investigated the effects of anti-L1 monoclonal antibodies (chCE7 and L1-11A) on proliferation and migration of L1-positive human SKOV3ip ovarian carcinoma cells in vitro and the therapeutic efficacy of L1-11A against i.p. SKOV3ip tumor growth in nude mice. In vitro, both anti-L1 antibodies efficiently inhibited the proliferation of SKOV3ip cells as well as other L1-expressing tumor cell lines (renal carcinoma, neuroblastoma, and colon carcinoma). On two cell lines, hyper-cross-linking of L1-11A with a secondary antibody was necessary for significant inhibition of proliferation, indicating that cross-linking of L1 is required for the antiproliferative effect. L1-negative prostate carcinoma cells were not influenced by antibody treatment. Biweekly treatment of ovarian carcinoma-bearing mice with L1-11A led to a dose-dependent and significant reduction of tumor burden (up to -63.5%) and ascites formation (up to -75%). This effect was associated with reduced proliferation within the tumors. L1-directed antibody-based inhibition of peritoneal growth and dissemination of human ovarian carcinoma cells represents important proof-of-principle for the development of a new therapy against one of the leading gynecologic malignant diseases.
International Journal of Cancer | 2006
Friedegund Meier; Silke Busch; Daniela Gast; Anne Göppert; Peter Altevogt; Evelyn Maczey; Svenja Riedle; Claus Garbe; Birgit Schittek
The adhesion molecule L1 is expressed in primary melanomas and cutaneous metastases in contrast to melanocytic nevi and melanocytes, and is significantly associated with metastatic spread. Recent studies have demonstrated that in carcinomas L1 expression is associated with sustained activation of the extracellular signal‐regulated kinase (ERK) pathway and upregulation of ERK‐dependent, motility‐ and invasion‐associated gene products including αvβ3 integrin. The objective of this study was to further investigate the role of the adhesion molecule L1 in melanoma progression, and to evaluate whether targeting the L1 adhesion molecule would have therapeutic effects against invasive melanoma growth. Using human melanoma cells from different stages of progression in monolayer and organotypic human skin culture mimicking the pathophysiological environment of cutaneous melanoma, we found that (1) L1 expression mostly correlates with melanoma progression and αvβ3 integrin expression, (2) overexpression of L1 in early radial growth phase melanoma cells promotes conversion from radial to vertical growth phase melanoma without upregulation of αvβ3 integrin expression, and (3) suppression of L1 function significantly reduces migration and invasion of melanoma cells, but does not completely block invasive melanoma growth. Altogether, L1 plays a critical role in melanoma invasion and progression and offers therapeutic potential in combination with conventional anticancer agents.
Biochemical Journal | 2009
Svenja Riedle; Helena Kiefel; Daniela Gast; Sandra Bondong; Silke Wolterink; Paul Gutwein; Peter Altevogt
L1-CAM (L1 cell-adhesion molecule), or more simply L1, plays an important role in the progression of human carcinoma. Overexpression promotes tumour-cell invasion and motility, growth in nude mice and tumour metastasis. It is feasible that L1-dependent signalling contributes to these effects. However, little is known about its mechanism in tumour cells. We reported previously that L1 is cleaved by ADAM (a disintegrin and metalloprotease) and that the cytoplasmic part is essential for L1 function. Here we analysed more closely the role of proteolytic cleavage in L1-mediated nuclear signalling. Using OVMz carcinoma cells and L1-transfected cells as a model, we found that ADAM10-mediated cleavage of L1 proceeds in lipid raft and non-raft domains. The cleavage product, L1-32, is further processed by PS (presenilin)/γ-secretase to release L1-ICD, an L1 intracellular domain of 28 kDa. Overexpression of dominant-negative PS1 or use of a specific γ-secretase inhibitor leads to an accumulation of L1-32. Fluorescence and biochemical analysis revealed a nuclear localization for L1-ICD. Moreover, inhibition of ADAM10 and/or γ-secretase blocks nuclear translocation of L1-ICD and L1-dependent gene regulation. Overexpression of recombinant L1-ICD mediates gene regulation in a similar manner to full-length L1. Our results establish for the first time that regulated proteolytic processing by ADAM10 and PS/γ-secretase is essential for the nuclear signalling of L1 in human carcinoma cell lines.
International Journal of Cancer | 2005
Daniela Gast; Svenja Riedle; Heidi Schabath; Sabine Schlich; Annette Schneider; Yasmin Issa; Alexander Stoeck; Mina Fogel; Safwan Joumaa; Till Wenger; Ingrid Herr; Paul Gutwein; Peter Altevogt
L1 is a neural cell adhesion molecule involved in cell migration, axon growth and guidance. Recent data have shown that L1 is overexpressed in ovarian and endometrial tumors and is associated with bad prognosis. How L1 promotes tumor progression is presently unknown. Here we show that L1 expression is predominantly confined to the invasive front of ovarian carcinomas. Overexpression of L1 in carcinoma cell lines by adenovirus‐mediated gene transfer enhanced the haptotactic cell migration on extracellular matrix proteins. Expression of L1 augmented tumor growth of carcinomas xenografted in nonobese diabetic/severe combined immunodeficient mice (NOD/SCID). A recent report has demonstrated L1‐dependent upregulation of β3 integrin involving activation of the extracellular signal‐regulated kinase (erk) pathway. We find that L1 and β3 integrin are not coexpressed in ovarian carcinoma tissues. Overexpression of L1 did not upregulate β3 integrin in ovarian carcinoma cell lines but could do so in HEK293 cells. Our results suggest that L1 could drive progression by enhancing cell migration and tumor growth but that L1 dependent and erk‐regulated gene expression requires cell‐type specific elements.
Experimental Cell Research | 2008
Daniela Gast; Svenja Riedle; Helena Kiefel; Susanne Sebens Müerköster; Michael K.E. Schäfer; Peter Altevogt
L1 cell adhesion molecule (L1-CAM) is a transmembrane cell adhesion molecule initially defined as a promigratory molecule in the developing nervous system. L1 is also overexpressed in a variety of human carcinomas and is associated with bad prognosis. In carcinoma cell lines L1 augments cell motility and metastasis, tumor growth in nude mice and induces expression of L1-dependent genes. It is not known whether L1-signaling requires ligand binding. The RGD motif in the sixth Ig domain of L1 is a binding site for integrins. In the present study we analyzed the role of RGDs in L1-signaling using site-directed mutagenesis combined with antibody blocking studies. We observed that L1-RGE expressing HEK293 cells showed reduced cell-cell binding, cell motility, invasiveness and tumor growth in NOD/SCID mice. The RGE-mutation impaired L1-dependent gene regulation and antibodies to alphavbeta5 integrin had similar effects. Mutant L1 was unable to translocate to the nucleus. Our findings highlight the importance of the RGD site in L1 for human tumors and suggest that nuclear signaling of L1 is dependent on integrins.
Gynecologic Oncology | 2007
Alexander Stoeck; Daniela Gast; Michael P. Sanderson; Yasmin Issa; Paul Gutwein; Peter Altevogt
International Journal of Oncology | 1992
Susanne Sebens Müerköster; Jörn Kötteritzsch; Claudia Geismann; Daniela Gast; Marie-Luise Kruse; Peter Altevogt; Ulrich R. Fölsch
Archive | 2007
Peter Altevogt; Alexander Stoeck; Daniela Gast; Müerköster Susanne Sebens