Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Guarnieri is active.

Publication


Featured researches published by Daniela Guarnieri.


Langmuir | 2010

Surface investigation on biomimetic materials to control cell adhesion: the case of RGD conjugation on PCL.

Filippo Causa; Edmondo Battista; Raffaella Della Moglie; Daniela Guarnieri; Maria Iannone; Paolo A. Netti

The cell recognition of bioactive ligands immobilized on polymeric surfaces is strongly dependent on ligand presentation at the cell/material interface. While small peptide sequences such as Arg-Gly-Asp (RGD) are being widely used to obtain biomimetic interfaces, surface characteristics after immobilization as well as presentation of such ligands to cell receptors deserve more detailed investigation. Here, we immobilized an RGD-based sequence on poly(epsilon-caprolactone) (PCL), a largely widespread polymeric material used in biomedical applications, after polymer aminolysis. The surface characteristics along with the efficacy of the functionalization was monitored by surface analysis (FTIR-ATR, contact angle measurements, surface free energy determination) and spectrophotometric assays specially adapted for the analytical quantification of functional groups and/or peptides at the interface. Particular attention was paid to the evaluation of a number, morphology, and penetration depth of immobilized functional groups and/or peptides engrafted on polymeric substrates. In particular, a typical morphology in peptide distribution was evidenced on the surface raised from polymer crystallites, while a significant penetration depth of the engrafted molecules was revealed. NIH3T3 fibroblast adhesion studies verified the correct presentation of the ligand with enhanced cell attachment after peptide conjugation. Such work proposes a morphological and analytical approach in surface characterization to study the surface treatment and the distribution of ligands immobilized on polymeric substrates.


Small | 2013

Shuttle‐Mediated Nanoparticle Delivery to the Blood–Brain Barrier

Daniela Guarnieri; Annarita Falanga; Ornella Muscetti; Rossella Tarallo; Sabato Fusco; Massimiliano Galdiero; Stefania Galdiero; Paolo A. Netti

Many therapeutic drugs are excluded from entering the brain due to their lack of transport through the blood-brain barrier (BBB). The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous diseases. To overcome this problem, a viral fusion peptide (gH625) derived from the glycoprotein gH of Herpes simplex virus type 1 is developed, which possesses several advantages including high cell translocation potency, absence of toxicity of the peptide itself, and the feasibility as an efficient carrier for delivering therapeutics. Therefore, it is hypothesized that brain delivery of nanoparticles conjugated with gH625 should be efficiently enhanced. The surface of fluorescent aminated polystyrene nanoparticles (NPs) is functionalized with gH625 via a covalent binding procedure, and the NP uptake mechanism and permeation across in vitro BBB models are studied. At early incubation times, the uptake of NPs with gH625 by brain endothelial cells is greater than that of the NPs without the peptide, and their intracellular motion is mainly characterized by a random walk behavior. Most importantly, gH625 peptide decreases NP intracellular accumulation as large aggregates and enhances the NP BBB crossing. In summary, these results establish that surface functionalization with gH625 may change NP fate by providing a good strategy for the design of promising carriers to deliver drugs across the BBB for the treatment of brain diseases.


Chemistry: A European Journal | 2011

Clickable Functionalization of Liposomes with the gH625 Peptide from Herpes simplex Virus Type I for Intracellular Drug Delivery

Rossella Tarallo; Antonella Accardo; Annarita Falanga; Daniela Guarnieri; Giuseppe Vitiello; Paolo A. Netti; Gerardino D'Errico; Giancarlo Morelli; Stefania Galdiero

Liposomes externally modified with the nineteen residues gH625 peptide, previously identified as a membrane-perturbing domain in the gH glycoprotein of Herpes simplex virus type I, have been prepared in order to improve the intracellular uptake of an encapsulated drug. An easy and versatile synthetic strategy, based on click chemistry, has been used to bind, in a controlled way, several copies of the hydrophobic gH625 peptide on the external surface of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPG)-based liposomes. Electron paramagnetic resonance studies, on liposomes derivatized with gH625 peptides, which are modified with the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) spin label in several peptide positions, confirm the positioning of the coupled peptides on the liposome external surface, whereas dynamic light scattering measurements indicate an increase of the diameter of the liposomes of approximately 30% after peptide introduction. Liposomes have been loaded with the cytotoxic drug doxorubicin and their ability to penetrate inside cells has been evaluated by confocal microscopy experiments. Results suggest that liposomes functionalized with gH625 may act as promising intracellular targeting carriers for efficient delivery of drugs, such as chemotherapeutic agents, into tumor cells.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots

Annarita Falanga; Maria Vitiello; Marco Cantisani; Rossella Tarallo; Daniela Guarnieri; Eleonora Mignogna; Paolo A. Netti; Carlo Pedone; Massimiliano Galdiero; Stefania Galdiero

UNLABELLED Cell membranes are impermeable to most molecules that are not actively imported by living cells, including all macromolecules and even small molecules whose physiochemical properties prevent passive membrane diffusion. However, recently, we have seen the development of increasingly sophisticated methodology for intracellular drug delivery. Cell-penetrating peptides (CPPs), short peptides believed to enter cells by penetrating cell membranes, have attracted great interest in the hope of enhancing gene therapy, vaccine development and drug delivery. Nevertheless, to achieve an efficient intracellular delivery, further strategies to bypass the endocytotic pathway must be investigated. We report on a novel peptide molecule derived from glycoprotein gH of herpes simplex type I virus that is able to traverse the membrane bilayer and to transport a cargo into the cytoplasm with novel properties in comparison with existing CPPs. We use as cargo molecule quantum dots that do not significantly traverse the membrane bilayer on their own. FROM THE CLINICAL EDITOR Cell-penetrating peptides have recently attracted great interest in optimizing gene therapy, vaccine development and drug delivery. In this study, a peptide derived from glycoprotein gH of herpes simplex I is investigated from this standpoint.


Acta Biomaterialia | 2009

Engineered μ-bimodal poly(ε-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation

A. Salerno; Daniela Guarnieri; M. Iannone; S. Zeppetelli; E. Di Maio; S. Iannace; Paolo A. Netti

The use of scaffold-based strategies in the regeneration of biological tissues requires that the design of the microarchitecture of the scaffold satisfy key microstructural and biological requirements. Here, we examined the ability of a porous poly(epsilon-caprolactone) (PCL) scaffold with novel bimodal-micron scale (mu-bimodal) porous architecture to promote and guide the in vitro adhesion, proliferation and three-dimensional (3-D) colonization of human mesenchymal stem cells (hMSCs). The mu-bimodal PCL scaffold was prepared by a combination of gas foaming (GF) and selective polymer extraction (PE) from co-continuous blends. The microarchitectural properties of the scaffold, in particular its morphology, porosity distribution and mechanical compression properties, were analyzed and correlated with the results of the in vitro cell-scaffold interaction study, carried out for 21days under static conditions. Alamar Blue assay, scanning electron microscopy, confocal laser scanning microscopy and histological analyses were performed to assess hMSC adhesion, proliferation and 3-D colonization. The results showed that the combined GF-PE technique allowed the preparation of PCL scaffold with a unique multiscaled and highly interconnected microarchitecture that was characterized by mechanical properties suitable for load-bearing applications. Study of the cell-scaffold interaction also demonstrated the ability of the scaffold to support hMSC adhesion and proliferation, as well as the possibility to promote and guide 3-D cell colonization by appropriately designing the microarchitectural features of the scaffold.


Journal of Biotechnology | 2015

Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells.

Daria Maria Monti; Daniela Guarnieri; Giuliana Napolitano; Renata Piccoli; Paolo A. Netti; Sabato Fusco; Angela Arciello

Recent years have witnessed an unprecedented growth in the number of applications—such as drug delivery, nutraceuticals and production of improved biocompatible materials—in the areas of nanoscience and nanotechnology. Engineered nanoparticles (NPs) are an important tool for the development of quite a few of these applications. Despite intense research activity, mechanisms regulating the uptake of NPs into cells are not completely defined, being the phenomenon dramatically influenced by physico-chemical properties of NPs and cell-specific differences. Since the cellular uptake of NPs is a prerequisite for their use in nanomedicine, the definition of their internalization pathway is crucial. For this reason, we used 44 nm polystyrene NPs as a model to analyze the uptake and endocytosis pathways in primary human renal cortical epithelial (HRCE) cells, which play a key role in the clearance of drugs. NPs were found not to affect the viability and cell cycle progression of HRCE cells. Distinct internalization pathways were analyzed by the use of drugs known to inhibit specific endocytosis routes. Analyses, performed by confocal microscopy in combination with quantitative spectrofluorimetric assays, indicated that NPs enter HRCE cells through multiple mechanisms, either energy-dependent (endocytosis) or energy-independent.


Biomaterials | 2015

Ligand engagement on material surfaces is discriminated by cell mechanosensoring

Edmondo Battista; Filippo Causa; Vincenzo Lettera; Valeria Panzetta; Daniela Guarnieri; Sabato Fusco; Francesco Gentile; Paolo A. Netti

Peptide or protein ligands can be used for molecular decoration to enhance the functionality of synthetic materials. However, some skepticism has arisen about the efficacy of such strategy in practical contexts since serum proteins largely adsorb. To address this issue, it is crucial to ascertain whether a chemically conjugated integrin-binding peptide is fully recognized by a cell even if partially covered by a physisorbed layer of serum protein; in more general terms, if competitive protein fragments physisorbed onto the surface are distinguishable from those chemically anchored to it. Here, we engraft an RGD peptide on poly-ε-caprolactone (PCL) surfaces and follow the dynamics of focal adhesion (FA) and cytoskeleton assembly at different times and culture conditions using a variety of analytical tools. Although the presence of serum protein covers the bioconjugated RGD significantly, after the first adhesion phase cells dig into the physisorbed layer and reach the submerged signal to establish a more stable adhesion structure (mature FAs). Although the spreading area index is not substantially affected by the presence of the RGD peptide, cells attached to chemically bound signals develop a stronger adhesive interaction with the materials and assemble a mechanically stable cytoskeleton. This demonstrates that cells are able to discriminate, via mechanosensoring, between adhesive motives belonging to physisorbed proteins and those firmly anchored on the material surface.


Nanotechnology | 2013

Sub-100 nm biodegradable nanoparticles: in vitro release features and toxicity testing in 2D and 3D cell cultures

Marco Biondi; Daniela Guarnieri; Hui Yu; Valentina Belli; Paolo A. Netti

A big challenge in tumor targeting by nanoparticles (NPs), taking advantage of the enhanced permeability and retention effect, is the fabrication of small size devices for enhanced tumor penetration, which is considered fundamental to improve chemotherapy efficacy. The purposes of this study are (i) to engineer the formulation of doxorubicin-loaded poly(D,L-lactic-co-glycolic acid) (PLGA)-block-poly(ethylene glycol) (PEG) NPs to obtain <100 nm devices and (ii) to translate standard 2D cytotoxicity studies to 3D collagen systems in which an initial step gradient of the NPs is present. Doxorubicin release can be prolonged for days to weeks depending on the NP formulation and the pH of the release medium. Sub-100 nm NPs are effectively internalized by HeLa cells in 2D and are less cytotoxic than free doxorubicin. In 3D, <100 nm NPs are significantly more toxic than larger ones towards HeLa cells, and the cell death rate is affected by the contributions of drug release and device transport through collagen. Thus, the reduction of NP size is a fundamental feature from both a technological and a biological point of view and must be properly engineered to optimize the tumor response to the NPs.


International Journal of Nanomedicine | 2013

gH625 is a viral derived peptide for effective delivery of intrinsically disordered proteins

Giovanni Smaldone; Annarita Falanga; Domenica Capasso; Daniela Guarnieri; Stefania Correale; Massimiliano Galdiero; Paolo A. Netti; Massimo Zollo; Stefania Galdiero; Sonia Di Gaetano; Emilia Pedone

A genetically modified recombinant gH625-c-prune was prepared through conjugation of c-prune with gH625, a peptide encompassing 625–644 residues of the glycoprotein H of herpes simplex virus 1, which has been proved to possess the ability to carry cargo molecules across cell membranes. C-prune is the C-terminal domain of h-prune, overexpressed in breast, colorectal, and gastric cancers, interacting with multiple partners, and representing an ideal target for inhibition of cancer development. Its C-terminal domain results in an intrinsically disordered domain (IDD), and the peculiar properties of gH625 render it an optimal candidate to act as a carrier for this net negatively charged molecule by comparison with the positively charged TAT. A characterization of the recombinant gH625-c-prune fusion protein was conducted by biochemical, cellular biology and confocal microscopy means in comparison with TAT-c-prune. The results showed that the gH625-c-prune exhibited the ability to cross biomembranes, opening a new scenario on the use of gH625 as a novel multifunctional carrier.


Journal of Biomaterials Applications | 2012

Binary system thermodynamics to control pore architecture of PCL scaffold via temperature-driven phase separation process

Vincenzo Guarino; Angela Guaccio; Daniela Guarnieri; Paolo A. Netti; Luigi Ambrosio

The use of scaffold-aided strategies for the regeneration of biological tissues requires the fulfilment of an accurate architectural design, that is, micro and macrostructure, with the final goal of realizing architectures to adopt as guidance for those cell activities specific to the formation of novel tissues. Here, highly porous scaffolds made up of biodegradable poly(ε-caprolactone) (PCL) have been realized by thermally induced phase separation (TIPS). Two different polymer/solvent systems, derived by the dissolution of PCL in dioxane and DMSO respectively, were investigated. The aim was to demonstrate the high potential of TIPS technique, in imprinting specific pore features to the polymer matrices, by a conscious selection of polymer/solvent systems. The investigation of pore architecture by SEM/mercury intrusion porosimetry/image analyses, firstly allow to detect remarkable variations in porosity (from 92% to 78%,) and pore sizes, ranging from micro-scale (ca 10 µm) to macro-scale (greater than 100 µm) as a function of the used polymer/solvent systems. Moreover, experimental and theoretical evidences referred to scaffold shaped in custom-made molds – a thin Teflon ring between two copper plates – allow exploring how the sensitivity of polymer solution features (i.e., crystallinity, thermal inertia) to the cooling temperature can affect the alignment of polymer phases and, ultimately, scaffold pore anisotropy. Analytical results supported by preliminary biological studies demonstrate the higher ability of PCL/dioxane solution to promote the formation of aligned pores which provide a morphological guidance to cell advance during the preliminary stage of culture. These findings, taken as a whole, put the basis for a better informed regeneration of structurally complex tissues based on the modeling of scaffold micro and macro-architecture by thermodynamic forces.

Collaboration


Dive into the Daniela Guarnieri's collaboration.

Top Co-Authors

Avatar

Paolo A. Netti

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Raffaele Vecchione

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Pier Paolo Pompa

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Valentina Belli

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Sabato Fusco

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Andrea P. Falanga

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Stefania Galdiero

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Annarita Falanga

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Massimiliano Galdiero

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Ornella Muscetti

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge