Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Henzlova is active.

Publication


Featured researches published by Daniela Henzlova.


Journal of Applied Physics | 2016

Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

N. Guler; Petr L. Volegov; Andrea Favalli; F. E. Merrill; Katerina Falk; D. Jung; J. L. Tybo; C. H. Wilde; Stephen Croft; C. R. Danly; O. Deppert; M. Devlin; Juan C. Fernandez; D. C. Gautier; Matthias Geissel; R. Haight; Christopher E. Hamilton; B. M. Hegelich; Daniela Henzlova; R. P. Johnson; G. Schaumann; Kurt F. Schoenberg; M. Schollmeier; Tsutomu Shimada; Martyn T. Swinhoe; T.N. Taddeucci; S.A. Wender; G. A. Wurden; Markus Roth

Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ∼5 × 109 n/sr, in a single laser shot, primarily due to ...


Physical Review C | 2013

High-precision measurement of total fission cross sections in spallation reactions of 208Pb and 238U

K. H. Schmidt; B. Jurado; R. Pleskač; M. V. Ricciardi; J. Benlliure; A. Boudard; E. Casarejos; T. Enqvist; F. Farget; A. Bacquias; M. Fernandez; L. Giot; V. Henzl; Daniela Henzlova; A. Kelic-Heil; T. Kurtukian; S. Leray; S. Lukic; Son Nguyen Ngoc; P. Nadtochy; D. Perez; C. Schmitt

Total cross sections for proton- and deuteron-induced-fission of 208Pb and 238U have been determined in the energy range between 500 MeV and 1 GeV. The experiment has been performed in inverse kinematics at GSI Darmstadt, facilitating the counting of the projectiles and the identification of the reaction products. High precision between 5 and 7 percent has been achieved by individually counting the beam particles and by registering both fission fragments in coincidence with high efficiency and full Z resolution. Fission was clearly distinguished from other reaction channels. The results were found to deviate by up to 30 percent from Prokofievs systematics on total fission cross sections. There is good agreement with an elaborate experiment performed in direct kinematics.


Nuclear Physics | 2005

Mass and Isospin Effects in Multifragmentation

C. Sfienti; P. Adrich; T. Aumann; C.O. Bacri; T. Barczyk; R. Bassini; C. Boiano; A. S. Botvina; A. Boudard; J. Brzychczyk; A. Chbihi; J. Cibor; B. Czech; M. De Napoli; J.-É. Ducret; H. Emling; J.D. Frankland; M. Hellström; Daniela Henzlova; K. Kezzar; G. Imme; I. Iori; H. Johansson; A. Lafriakh; A. Le Fèvre; E. Le Gentil; Y. Leifels; W. G. Lynch; J. Lühning; J. Łukasik

A systematic study of isospin effects in the breakup of projectile spectators at relativistic energies has been performed with the ALADiN spectrometer at the GSI laboratory (Darmstadt). Four different projectiles 197Au, 124La, 124Sn and 107Sn, all with an incident energy of 600 AMeV, have been used, thus allowing a study of various combinations of masses and N/Z ratios in the entrance channel. The measurement of the momentum vector and of the charge of all projectile fragments with Z>1 entering the acceptance of the ALADiN magnet has been performed with the high efficiency and resolution achieved with the TP-MUSIC IV detector. The Rise and Fall behavior of the mean multiplicity of IMFs as a function of Zbound and its dependence on the isotopic composition has been determined for the studied systems. Other observables investigated so far include mean N/Z values of the emitted light fragments and neutron multiplicities. Qualitative agreement has been obtained between the observed gross properties and the predictions of the Statistical Multifragmentation Model.


Physics of Plasmas | 2017

Laser-plasmas in the relativistic-transparency regime: Science and applications

Juan C. Fernandez; D. Cort Gautier; Chengkung Huang; S. Palaniyappan; B. J. Albright; W. Bang; G. Dyer; Andrea Favalli; James F. Hunter; Jacob Mendez; Markus Roth; Martyn T. Swinhoe; P. A. Bradley; O. Deppert; Michelle A. Espy; Katerina Falk; N. Guler; Christopher E. Hamilton; B. M. Hegelich; Daniela Henzlova; Kiril Dimitrov Ianakiev; Metodi Iliev; R. P. Johnson; A. Kleinschmidt; Adrian S. Losko; E. McCary; M. Mocko; R. O. Nelson; R. Roycroft; Miguel A. Santiago Cordoba

Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at “table-top” scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (∼104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (∼0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2–8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ∼2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2012

Neutron recognition in the LAND detector for large neutron multiplicity

P. Pawlowski; J. Brzychczyk; Y. Leifels; W. Trautmann; P. Adrich; T. Aumann; C.O. Bacri; T. Barczyk; R. Bassini; S. Bianchin; C. Boiano; K. Boretzky; A. Boudard; A. Chbihi; J. Cibor; B. Czech; M. De Napoli; J.-É. Ducret; H. Emling; J.D. Frankland; T. Gorbinet; M. Hellström; Daniela Henzlova; S. Hlavac; J. Immè; I. Iori; H. Johansson; K. Kezzar; S. Kupny; A. Lafriakh

The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment


Nuclear Physics | 2007

Gross Properties and Isotopic Phenomena in Spectator Fragmentation

C. Sfienti; M. De Napoli; P. Adrich; T. Aumann; C.O. Bacri; T. Barczyk; R. Bassini; S. Bianchin; C. Boiano; A. S. Botvina; A. Boudard; J. Brzychczyk; A. Chbihi; J. Cibor; B. Czech; J.-É. Ducret; H. Emling; J.D. Frankland; M. Hellström; Daniela Henzlova; K. Kezzar; G. Imme; I. Iori; H. Johansson; A. Lafriakh; A. Le Fèvre; E. Le Gentil; Y. Leifels; W. G. Lynch; J. Lühning

A systematic study of isotopic effects in the break-up of projectile spectators at relativistic energies has been performed with the ALADiN spectrometer at the GSI laboratory. Searching for signals of criticality in the fragment production we have applied the model-independent universal fluctuations theory already proposed to track criticality signals in multifragmentation to our data. The fluctuation of the largest fragment charge and of the asymmetry of the two and three largest fragments and their bimodal distribution have also been analysed.


Archive | 2016

Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

Howard O. Menlove; Daniela Henzlova

This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. The comparison data is presented in this report.


Archive | 2016

High-dose neutron detector development

Daniela Henzlova; Howard O. Menlove

The development of advanced sustainable nuclear fuel cycles relying on used nuclear fuel is one of the key programs pursued by the DOE Office of Nuclear Energy to minimize waste generation, limit proliferation risk and maximize energy production using nuclear energy. Safeguarding of advanced nuclear fuel cycles is essential to ensure the safety and security of the nuclear material. Current non-destructive assay (NDA) systems typically employ fission chambers or 3He-based tubes for the measurement of used fuel. Fission chambers are capable of withstanding the high gamma-ray backgrounds; however, they provide very low detection efficiency on the order of 0.01%. To benefit from the additional information provided by correlated neutron counting [1] higher detection efficiencies are required. 3He-based designs allow for higher detection efficiencies; however, at the expense of slow signal rise time characteristics and higher sensitivity to the gamma-ray backgrounds. It is therefore desirable to evaluate and develop technologies with potential to exceed performance parameters of standard fission chamber-based or 3He-based detection systems currently used in the NDA instrumentation.


Archive | 2017

High-dose neutron detector project update

Howard O. Menlove; Daniela Henzlova

These are the slides for a progress review meeting by the sponsor. This is an update on the high-dose neutron detector project. In summary, improvements in both boron coating and signal amplification have been achieved; improved boron coating materials and procedures have increased efficiency by ~ 30-40% without the corresponding increase in the detector plate area; low dead-time via thin cell design (~ 4 mm gas gaps) and fast amplifiers; prototype PDT 8” pod has been received and testing is in progress; significant improvements in efficiency and stability have been verified; use commercial PDT 10B design and fabrication to obtain a faster path from the research to practical high-dose neutron detector.


Archive | 2016

Report on MPACT Deliverable M3FT-16LA040106035 (High Dose Evaluation of Improved PDT Detector Pod)

Howard O. Menlove; Daniela Henzlova

This report provides the results for the initial high gamma dose tests for the boron-10 plate detector that was fabricated by PDT, Inc. under contract to LANL The specifications for the detector were developed using MCNP code simulations and prior experimental tests at LANL. The goal in the development was to provide high neutron detection efficiency together with gamma-ray resistance at very high gamma dose levels that are characteristic of the electrochemical fuel processing activity.

Collaboration


Dive into the Daniela Henzlova's collaboration.

Top Co-Authors

Avatar

Howard O. Menlove

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen Croft

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrea Favalli

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Martyn T. Swinhoe

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Johnna B Marlow

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter A. Santi

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carlos D. Rael

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Danielle K Hauck

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Louise G Evans

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Isaac P. Martinez

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge