Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Hubl is active.

Publication


Featured researches published by Daniela Hubl.


Neurobiology of Aging | 2005

Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment.

Thomas Koenig; Leslie S. Prichep; Thomas Dierks; Daniela Hubl; Lars-Olof Wahlund; Erwin Roy John; Vesna Jelic

The hypothesis of a functional disconnection of neuro-cognitive networks in patients with mild cognitive impairment (MCI) and Alzheimer Dementia was investigated using baseline resting EEG data. EEG databases from New York (264 subjects) and Stockholm (155 subjects), including healthy controls and patients with varying degrees of cognitive decline or Alzheimer Dementia were analyzed using Global Field Synchronization (GFS), a novel measure of global EEG synchronization. GFS reflects the global amount of phase-locked activity at a given frequency by a single number; it is independent of the recording reference and of implicit source models. Patients showed decreased GFS values in Alpha, Beta, and Gamma frequency bands, and increased GFS values in the Delta band, confirming the hypothesized disconnection syndrome. The results are discussed within the framework of current knowledge about the functional significance of the affected frequency bands.


Neurology | 2003

Functional imbalance of visual pathways indicates alternative face processing strategies in autism

Daniela Hubl; Sven Bölte; Sabine Feineis-Matthews; Heinrich Lanfermann; Andrea Federspiel; Werner Strik; Fritz Poustka; Thomas Dierks

Objective: To investigate whether autistic subjects show a different pattern of neural activity than healthy individuals during processing of faces and complex patterns. Methods: Blood oxygen level–dependent (BOLD) signal changes accompanying visual processing of faces and complex patterns were analyzed in an autistic group (n = 7; 25.3 [6.9] years) and a control group (n = 7; 27.7 [7.8] years). Results: Compared with unaffected subjects, autistic subjects demonstrated lower BOLD signals in the fusiform gyrus, most prominently during face processing, and higher signals in the more object-related medial occipital gyrus. Further signal increases in autistic subjects vs controls were found in regions highly important for visual search: the superior parietal lobule and the medial frontal gyrus, where the frontal eye fields are located. Conclusions: The cortical activation pattern during face processing indicates deficits in the face-specific regions, with higher activations in regions involved in visual search. These findings reflect different strategies for visual processing, supporting models that propose a predisposition to local rather than global modes of information processing in autism.


NeuroImage | 2002

Functional imaging of visuospatial processing in Alzheimer's disease

David Prvulovic; Daniela Hubl; Alexander T. Sack; L. Melillo; Konrad Maurer; L. Frölich; Heinrich Lanfermann; Friedhelm E. Zanella; Rainer Goebel; David Edmund Johannes Linden; Thomas Dierks

Alzheimers disease (AD) is known to cause a variety of disturbances of higher visual functions that are closely related to the neuropathological changes. Visual association areas are more affected than primary visual cortex. Additionally, there is evidence from neuropsychological and imaging studies during rest or passive visual stimulation that the occipitotemporal pathway is less affected than the parietal pathway. Our goal was to investigate functional activation patterns during active visuospatial processing in AD patients and the impact of local cerebral atrophy on the strength of functional activation. Fourteen AD patients and fourteen age-matched controls were measured with functional magnetic resonance imaging (fMRI) while they performed an angle discrimination task. Both groups revealed overlapping networks engaged in angle discrimination including the superior parietal lobule (SPL), frontal and occipitotemporal (OTC) cortical regions, primary visual cortex, basal ganglia, and thalamus. The most pronounced differences between the two groups were found in the SPL (more activity in controls) and OTC (more activity in patients). The differences in functional activation between the AD patients and controls were partly explained by the differences in individual SPL atrophy. These results indicate that parietal dysfunction in mild to moderate AD is compensated by recruitment of the ventral visual pathway. We furthermore suggest that local cerebral atrophy should be considered as a covariate in functional imaging studies of neurodegenerative disorders.


Behavioral Neuroscience | 2006

Facial affect recognition training in autism: can we animate the fusiform gyrus?

Sven Bölte; Daniela Hubl; Sabine Feineis-Matthews; David Prvulovic; Thomas Dierks; Fritz Poustka

One of the most consistent findings in the neuroscience of autism is hypoactivation of the fusiform gyrus (FG) during face processing. In this study the authors examined whether successful facial affect recognition training is associated with an increased activation of the FG in autism. The effect of a computer-based program to teach facial affect identification was examined in 10 individuals with high-functioning autism. Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) changes in the FG and other regions of interest, as well as behavioral facial affect recognition measures, were assessed pre- and posttraining. No significant activation changes in the FG were observed. Trained participants showed behavioral improvements, which were accompanied by higher BOLD fMRI signals in the superior parietal lobule and maintained activation in the right medial occipital gyrus.


Schizophrenia Bulletin | 2012

Neuroimaging Auditory Hallucinations in Schizophrenia: From Neuroanatomy to Neurochemistry and Beyond

Paul Allen; Gemma Modinos; Daniela Hubl; Gregory Shields; Arnaud Cachia; Renaud Jardri; Pierre Thomas; Todd S. Woodward; Paul Shotbolt; Marion Plaze; Ralph E. Hoffman

Despite more than 2 decades of neuroimaging investigations, there is currently insufficient evidence to fully understand the neurobiological substrate of auditory hallucinations (AH). However, some progress has been made with imaging studies in patients with AH consistently reporting altered structure and function in speech and language, sensory, and nonsensory regions. This report provides an update of neuroimaging studies of AH with a particular emphasis on more recent anatomical, physiological, and neurochemical imaging studies. Specifically, we provide (1) a review of findings in schizophrenia and nonschizophrenia voice hearers, (2) a discussion regarding key issues that have interfered with progress, and (3) practical recommendations for future studies.


NeuroImage | 2005

The spatiotemporal pattern of auditory cortical responses during verbal hallucinations.

Vincent van de Ven; Elia Formisano; Christian H. Röder; David Prvulovic; Robert A. Bittner; Matthias G. Dietz; Daniela Hubl; Thomas Dierks; Andrea Federspiel; Fabrizio Esposito; Francesco Di Salle; Bernadette M. Jansma; Rainer Goebel; David Edmund Johannes Linden

Functional magnetic resonance imaging (fMRI) studies can provide insight into the neural correlates of hallucinations. Commonly, such studies require self-reports about the timing of the hallucination events. While many studies have found activity in higher-order sensory cortical areas, only a few have demonstrated activity of the primary auditory cortex during auditory verbal hallucinations. In this case, using self-reports as a model of brain activity may not be sensitive enough to capture all neurophysiological signals related to hallucinations. We used spatial independent component analysis (sICA) to extract the activity patterns associated with auditory verbal hallucinations in six schizophrenia patients. SICA decomposes the functional data set into a set of spatial maps without the use of any input function. The resulting activity patterns from auditory and sensorimotor components were further analyzed in a single-subject fashion using a visualization tool that allows for easy inspection of the variability of regional brain responses. We found bilateral auditory cortex activity, including Heschls gyrus, during hallucinations of one patient, and unilateral auditory cortex activity in two more patients. The associated time courses showed a large variability in the shape, amplitude, and time of onset relative to the self-reports. However, the average of the time courses during hallucinations showed a clear association with this clinical phenomenon. We suggest that detection of this activity may be facilitated by examining hallucination epochs of sufficient length, in combination with a data-driven approach.


International Journal of Circumpolar Health | 2002

THE DEVELOPMENT AND EVALUATION OF A COMPUTER-BASED PROGRAM TO TEST AND TO TEACH THE RECOGNITION OF FACIAL AFFECT

Sven Bölte; Sabine Feineis-Matthews; Simone Leber; Thomas Dierks; Daniela Hubl; Fritz Poustka

Autism is a chronic pervasive neurodevelopmental disorder characterized by the early onset of social and communicative impairments as well as restricted, ritualized, stereotypic behavior. The endophenotype of autism includes neuropsychological deficits, for instance a lack of “Theory of Mind” and problems recognizing facial affect. In this study, we report the development and evaluation of a computer-based program to teach and test the ability to identify basic facially expressed emotions. 10 adolescent or adult subjects with high-functioning autism or Asperger-syndrome were included in the investigation. A priori the facial affect recognition test had shown good psychometric properties in a normative sample (internal consistency: rtt=.91-.95; retest reliability: rtt=.89-.92). In a prepost design, one half of the sample was randomly assigned to receive computer treatment while the other half of the sample served as control group. The training was conducted for five weeks, consisting of two hours training a week. The trained individuals improved significantly on the affect recognition task, but not on any other measure. Results support the usefulness of the program to teach the detection of facial affect. However, the improvement found is limited to a circumscribed area of social-communicative function and generalization is not ensured.


Philosophical Transactions of the Royal Society B | 2005

Brain connectivity at different time-scales measured with EEG

Thomas Koenig; D. Studer; Daniela Hubl; L. Melie; Werner Strik

We present an overview of different methods for decomposing a multichannel spontaneous electroencephalogram (EEG) into sets of temporal patterns and topographic distributions. All of the methods presented here consider the scalp electric field as the basic analysis entity in space. In time, the resolution of the methods is between milliseconds (time-domain analysis), subseconds (time- and frequency-domain analysis) and seconds (frequency-domain analysis). For any of these methods, we show that large parts of the data can be explained by a small number of topographic distributions. Physically, this implies that the brain regions that generated one of those topographies must have been active with a common phase. If several brain regions are producing EEG signals at the same time and frequency, they have a strong tendency to do this in a synchronized mode. This view is illustrated by several examples (including combined EEG and functional magnetic resonance imaging (fMRI)) and a selective review of the literature. The findings are discussed in terms of short-lasting binding between different brain regions through synchronized oscillations, which could constitute a mechanism to form transient, functional neurocognitive networks.


Clinical Neurophysiology | 2011

Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates.

Jochen Kindler; Daniela Hubl; Werner Strik; Thomas Dierks; Thomas Koenig

OBJECTIVE Abnormal perceptions and cognitions in schizophrenia might be related to abnormal resting states of the brain. Previous research found that a specific class (class D) of sub-second electroencephalography (EEG) microstates was shortened in schizophrenia. This shortening correlated with positive symptoms. We questioned if this reflected positive psychotic traits or present psychopathology. METHODS Resting-state EEGs of frequently hallucinating patients, indicating on- and offset of hallucinations by button press, were analyzed. Microstate class D duration was related to spontaneous within-subject fluctuations of auditory hallucinations. RESULTS Microstate D was significantly shorter in periods with hallucinations. CONCLUSIONS Microstates of class D resemble topographies associated with error monitoring. Its premature termination may facilitate the misattribution of self-generated inner speech to external sources during hallucinations. SIGNIFICANCE These results suggest that microstate D represents a biological state marker for hallucinatory experiences.


Neuroscience | 2008

Time course of blood oxygenation level-dependent signal response after theta burst transcranial magnetic stimulation of the frontal eye field

Daniela Hubl; Thomas Nyffeler; Pascal Wurtz; Silvia Chaves; Tobias Pflugshaupt; Mathias Lüthi; R. von Wartburg; Roland Wiest; Thomas Dierks; Werner Strik; C. W. Hess; René Martin Müri

The aim of the current study was to examine the effect of theta burst repetitive transcranial magnetic stimulation (rTMS) on the blood oxygenation level-dependent (BOLD) activation during repeated functional magnetic resonance imaging (fMRI) measurements. Theta burst rTMS was applied over the right frontal eye field in seven healthy subjects. Subsequently, repeated fMRI measurements were performed during a saccade-fixation task (block design) 5, 20, 35, and 60 min after stimulation. We found that theta burst rTMS induced a strong and long-lasting decrease of the BOLD signal response of the stimulated frontal eye field at 20 and 35 min. Furthermore, less pronounced alterations of the BOLD signal response with different dynamics were found for remote oculomotor areas such as the left frontal eye field, the pre-supplementary eye field, the supplementary eye field, and both parietal eye fields. Recovery of the BOLD signal changes in the anterior remote areas started earlier than in the posterior remote areas. These results show that a) the major inhibitory impact of theta burst rTMS occurs directly in the stimulated area itself, and that b) a lower effect on remote, oculomotor areas can be induced.

Collaboration


Dive into the Daniela Hubl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge