Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela I. Drautz-Moses is active.

Publication


Featured researches published by Daniela I. Drautz-Moses.


Cell Reports | 2015

Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic

Vincent J. Lynch; Oscar C. Bedoya-Reina; Aakrosh Ratan; Michael Sulak; Daniela I. Drautz-Moses; George H. Perry; Webb Miller; Stephan C. Schuster

Woolly mammoths and living elephants are characterized by major phenotypic differences that have allowed them to live in very different environments. To identify the genetic changes that underlie the suite of woolly mammoth adaptations to extreme cold, we sequenced the nuclear genome from three Asian elephants and two woolly mammoths, and we identified and functionally annotated genetic changes unique to woolly mammoths. We found that genes with mammoth-specific amino acid changes are enriched in functions related to circadian biology, skin and hair development and physiology, lipid metabolism, adipose development and physiology, and temperature sensation. Finally, we resurrected and functionally tested the mammoth and ancestral elephant TRPV3 gene, which encodes a temperature-sensitive transient receptor potential (thermoTRP) channel involved in thermal sensation and hair growth, and we show that a single mammoth-specific amino acid substitution in an otherwise highly conserved region of the TRPV3 channel strongly affects its temperature sensitivity.


Mbio | 2015

In silico analyses of metagenomes from human atherosclerotic plaque samples

Suparna Mitra; Daniela I. Drautz-Moses; Morten Alhede; Myat Thiri Maw; Yang Liu; Rikky W. Purbojati; Zhei H. Yap; Kavita K. Kushwaha; Alexandra Gheorghe; Thomas Bjarnsholt; Gorm Mørk Hansen; Henrik Sillesen; Hans Petter Hougen; Peter Riis Hansen; Liang Yang; Tim Tolker-Nielsen; Stephan C. Schuster; Michael Givskov

BackgroundThrough several observational and mechanistic studies, microbial infection is known to promote cardiovascular disease. Direct infection of the vessel wall, along with the cardiovascular risk factors, is hypothesized to play a key role in the atherogenesis by promoting an inflammatory response leading to endothelial dysfunction and generating a proatherogenic and prothrombotic environment ultimately leading to clinical manifestations of cardiovascular disease, e.g., acute myocardial infarction or stroke. There are many reports of microbial DNA isolation and even a few studies of viable microbes isolated from human atherosclerotic vessels. However, high-resolution investigation of microbial infectious agents from human vessels that may contribute to atherosclerosis is very limited. In spite of the progress in recent sequencing technologies, analyzing host-associated metagenomes remain a challenge.ResultsTo investigate microbiome diversity within human atherosclerotic tissue samples, we employed high-throughput metagenomic analysis on: (1) atherosclerotic plaques obtained from a group of patients who underwent endarterectomy due to recent transient cerebral ischemia or stroke. (2) Presumed stabile atherosclerotic plaques obtained from autopsy from a control group of patients who all died from causes not related to cardiovascular disease. Our data provides evidence that suggest a wide range of microbial agents in atherosclerotic plaques, and an intriguing new observation that shows these microbiota displayed differences between symptomatic and asymptomatic plaques as judged from the taxonomic profiles in these two groups of patients. Additionally, functional annotations reveal significant differences in basic metabolic and disease pathway signatures between these groups.ConclusionsWe demonstrate the feasibility of novel high-resolution techniques aimed at identification and characterization of microbial genomes in human atherosclerotic tissue samples. Our analysis suggests that distinct groups of microbial agents might play different roles during the development of atherosclerotic plaques. These findings may serve as a reference point for future studies in this area of research.


Molecular Phylogenetics and Evolution | 2016

The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae).

Andreanna J. Welch; Katherine Collins; Aakrosh Ratan; Daniela I. Drautz-Moses; Stephan C. Schuster; Charlotte Lindqvist

The Hawaiian mints (Lamiaceae), one of the largest endemic plant lineages in the archipelago, provide an excellent system to study rapid diversification of a lineage with a remote, likely paleohybrid origin. Since their divergence from New World mints 4-5 million years ago the members of this lineage have diversified greatly and represent a remarkable array of vegetative and reproductive phenotypes. Today many members of this group are endangered or already extinct, and molecular phylogenetic work relies largely on herbarium samples collected during the last century. So far a gene-by-gene approach has been utilized, but the recent radiation of the Hawaiian mints has resulted in minimal sequence divergence and hence poor phylogenetic resolution. In our quest to trace the reticulate evolutionary history of the lineage, a resolved maternal phylogeny is necessary. We applied a high-throughput approach to sequence 12 complete or nearly complete plastid genomes from multiple Hawaiian mint species and relatives, including extinct and rare taxa. We also targeted 108 hypervariable regions from throughout the chloroplast genomes in nearly all of the remaining Hawaiian species, and relatives, using a next-generation amplicon sequencing approach. This procedure generated ∼20Kb of sequence data for each taxon and considerably increased the total number of variable sites over previous analyses. Our results demonstrate the potential of high-throughput sequencing of historic material for evolutionary studies in rapidly evolving lineages. Our study, however, also highlights the challenges of resolving relationships within recent radiations even at the genomic level.


Scientific Reports | 2016

Large-scale mitogenomics enables insights into Schizophora (Diptera) radiation and population diversity.

Ana Carolina M. Junqueira; Ana Maria Lima de Azeredo-Espin; Daniel F. Paulo; Marco Antonio Tonus Marinho; Lynn P. Tomsho; Daniela I. Drautz-Moses; Rikky W. Purbojati; Aakrosh Ratan; Stephan C. Schuster

True flies are insects of the order Diptera and encompass one of the most diverse groups of animals on Earth. Within dipterans, Schizophora represents a recent radiation of insects that was used as a model to develop a pipeline for generating complete mitogenomes using various sequencing platforms and strategies. 91 mitogenomes from 32 different species were sequenced and assembled with high fidelity, using amplicon, whole genome shotgun or single molecule sequencing approaches. Based on the novel mitogenomes, we estimate the origin of Schizophora within the Cretaceous-Paleogene (K-Pg) boundary, about 68.3 Ma. Detailed analyses of the blowfly family (Calliphoridae) place its origin at 22 Ma, concomitant with the radiation of grazing mammals. The emergence of ectoparasitism within calliphorids was dated 6.95 Ma for the screwworm fly and 2.3 Ma for the Australian sheep blowfly. Varying population histories were observed for the blowfly Chrysomya megacephala and the housefly Musca domestica samples in our dataset. Whereas blowflies (n = 50) appear to have undergone selective sweeps and/or severe bottlenecks in the New World, houseflies (n = 14) display variation among populations from different zoogeographical zones and low levels of gene flow. The reported high-throughput mitogenomics approach for insects enables new insights into schizophoran diversity and population history of flies.


Scientific Reports | 2015

Spatially extensive microbial biogeography of the Indian Ocean provides insights into the unique community structure of a pristine coral atoll.

Thomas C. Jeffries; Martin Ostrowski; Rohan B. H. Williams; Chao Xie; Rachelle M. Jensen; Joseph J. Grzymski; Svend Jacob Senstius; Michael Givskov; Ron K. Hoeke; Gayle K. Philip; Russell Y. Neches; Daniela I. Drautz-Moses; Caroline Chénard; Ian T. Paulsen; Federico M. Lauro

Microorganisms act both as drivers and indicators of perturbations in the marine environment. In an effort to establish baselines to predict the response of marine habitats to environmental change, here we report a broad survey of microbial diversity across the Indian Ocean, including the first microbial samples collected in the pristine lagoon of Salomon Islands, Chagos Archipelago. This was the first large-scale ecogenomic survey aboard a private yacht employing a ‘citizen oceanography’ approach and tools and protocols easily adapted to ocean going sailboats. Our data highlighted biogeographic patterns in microbial community composition across the Indian Ocean. Samples from within the Salomon Islands lagoon contained a community which was different even from adjacent samples despite constant water exchange, driven by the dominance of the photosynthetic cyanobacterium Synechococcus. In the lagoon, Synechococcus was also responsible for driving shifts in the metatranscriptional profiles. Enrichment of transcripts related to photosynthesis and nutrient cycling indicated bottom-up controls of community structure. However a five-fold increase in viral transcripts within the lagoon during the day, suggested a concomitant top-down control by bacteriophages. Indeed, genome recruitment against Synechococcus reference genomes suggested a role of viruses in providing the ecological filter for determining the β-diversity patterns in this system.


Scientific Reports | 2017

The microbiomes of blowflies and houseflies as bacterial transmission reservoirs

Ana Carolina M. Junqueira; Aakrosh Ratan; Enzo Acerbi; Daniela I. Drautz-Moses; Balakrishnan N. V. Premkrishnan; Paul Igor Costea; Bodo Linz; Rikky W. Purbojati; Daniel F. Paulo; Nicolas E. Gaultier; Poorani Subramanian; Nur A. Hasan; Rita R. Colwell; Peer Bork; Ana Maria Lima de Azeredo-Espin; Donald A. Bryant; Stephan C. Schuster

Blowflies and houseflies are mechanical vectors inhabiting synanthropic environments around the world. They feed and breed in fecal and decaying organic matter, but the microbiome they harbour and transport is largely uncharacterized. We sampled 116 individual houseflies and blowflies from varying habitats on three continents and subjected them to high-coverage, whole-genome shotgun sequencing. This allowed for genomic and metagenomic analyses of the host-associated microbiome at the species level. Both fly host species segregate based on principal coordinate analysis of their microbial communities, but they also show an overlapping core microbiome. Legs and wings displayed the largest microbial diversity and were shown to be an important route for microbial dispersion. The environmental sequencing approach presented here detected a stochastic distribution of human pathogens, such as Helicobacter pylori, thereby demonstrating the potential of flies as proxies for environmental and public health surveillance.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome

Tianying Lan; Tanya Renner; Enrique Ibarra-Laclette; Kimberly M. Farr; Tien-Hao Chang; Sergio Alan Cervantes-Pérez; Chunfang Zheng; David Sankoff; Haibao Tang; Rikky W. Purbojati; Alexander Putra; Daniela I. Drautz-Moses; Stephan C. Schuster; Luis Herrera-Estrella; Victor A. Albert

Significance Carnivorous plants capture and digest animal prey for nutrition. In addition to being carnivorous, the humped bladderwort plant, Utricularia gibba, has the smallest reliably assembled flowering plant genome. We generated an updated genome assembly based on single-molecule sequencing to address questions regarding the bladderwort’s genome adaptive landscape. Among encoded genes, we segregated those that could be confidently distinguished as having derived from small-scale versus whole-genome duplication processes and showed that conspicuous expansions of gene families useful for prey trapping and processing derived mainly from localized duplication events. Such small-scale, tandem duplicates are therefore revealed as essential elements in the bladderwort’s carnivorous adaptation. Utricularia gibba, the humped bladderwort, is a carnivorous plant that retains a tiny nuclear genome despite at least two rounds of whole genome duplication (WGD) since common ancestry with grapevine and other species. We used a third-generation genome assembly with several complete chromosomes to reconstruct the two most recent lineage-specific ancestral genomes that led to the modern U. gibba genome structure. Patterns of subgenome dominance in the most recent WGD, both architectural and transcriptional, are suggestive of allopolyploidization, which may have generated genomic novelty and led to instantaneous speciation. Syntenic duplicates retained in polyploid blocks are enriched for transcription factor functions, whereas gene copies derived from ongoing tandem duplication events are enriched in metabolic functions potentially important for a carnivorous plant. Among these are tandem arrays of cysteine protease genes with trap-specific expression that evolved within a protein family known to be useful in the digestion of animal prey. Further enriched functions among tandem duplicates (also with trap-enhanced expression) include peptide transport (intercellular movement of broken-down prey proteins), ATPase activities (bladder-trap acidification and transmembrane nutrient transport), hydrolase and chitinase activities (breakdown of prey polysaccharides), and cell-wall dynamic components possibly associated with active bladder movements. Whereas independently polyploid Arabidopsis syntenic gene duplicates are similarly enriched for transcriptional regulatory activities, Arabidopsis tandems are distinct from those of U. gibba, while still metabolic and likely reflecting unique adaptations of that species. Taken together, these findings highlight the special importance of tandem duplications in the adaptive landscapes of a carnivorous plant genome.


Scientific Reports | 2016

Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

Yingyu Law; Rasmus Hansen Kirkegaard; Angel Anisa Cokro; Xianghui Liu; Krithika Arumugam; Chao Xie; Mikkel Stokholm-Bjerregaard; Daniela I. Drautz-Moses; Per Halkjær Nielsen; Stefan Wuertz; Rohan B. H. Williams

Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.


Open Biology | 2016

Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels.

Song Lin Chua; Yichen Ding; Yang Liu; Zhao Cai; Jianuan Zhou; Sanjay Swarup; Daniela I. Drautz-Moses; Stephan C. Schuster; Staffan Kjelleberg; Michael Givskov; Liang Yang

The host immune system offers a hostile environment with antimicrobials and reactive oxygen species (ROS) that are detrimental to bacterial pathogens, forcing them to adapt and evolve for survival. However, the contribution of oxidative stress to pathogen evolution remains elusive. Using an experimental evolution strategy, we show that exposure of the opportunistic pathogen Pseudomonas aeruginosa to sub-lethal hydrogen peroxide (H2O2) levels over 120 generations led to the emergence of pro-biofilm rough small colony variants (RSCVs), which could be abrogated by l-glutathione antioxidants. Comparative genomic analysis of the RSCVs revealed that mutations in the wspF gene, which encodes for a repressor of WspR diguanylate cyclase (DGC), were responsible for increased intracellular cyclic-di-GMP content and production of Psl exopolysaccharide. Psl provides the first line of defence against ROS and macrophages, ensuring the survival fitness of RSCVs over wild-type P. aeruginosa. Our study demonstrated that ROS is an essential driving force for the selection of pro-biofilm forming pathogenic variants. Understanding the fundamental mechanism of these genotypic and phenotypic adaptations will improve treatment strategies for combating chronic infections.


npj Biofilms and Microbiomes | 2017

Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries

Daniel Belstrøm; Florentin Constancias; Yang Liu; Liang Yang; Daniela I. Drautz-Moses; Stephan C. Schuster; Gurjeet S. Kohli; Tim Holm Jakobsen; Palle Holmstrup; Michael Givskov

The taxonomic composition of the salivary microbiota has been reported to differentiate between oral health and disease. However, information on bacterial activity and gene expression of the salivary microbiota is limited. The purpose of this study was to perform metagenomic and metatranscriptomic characterization of the salivary microbiota and test the hypothesis that salivary microbial presence and activity could be an indicator of the oral health status. Stimulated saliva samples were collected from 30 individuals (periodontitis: n = 10, dental caries: n = 10, oral health: n = 10). Salivary microbiota was characterized using metagenomics and metatranscriptomics in order to compare community composition and the gene expression between the three groups. Streptococcus was the predominant bacterial genus constituting approx. 25 and 50% of all DNA and RNA reads, respectively. A significant disease-associated higher relative abundance of traditional periodontal pathogens such as Porphyromonas gingivalis and Filifactor alocis and salivary microbial activity of F. alocis was associated with periodontitis. Significantly higher relative abundance of caries-associated bacteria such as Streptococcus mutans and Lactobacillus fermentum was identified in saliva from patients with dental caries. Multiple genes involved in carbohydrate metabolism were significantly more expressed in healthy controls compared to periodontitis patients. Using metagenomics and metatranscriptomics we show that relative abundance of specific oral bacterial species and bacterial gene expression in saliva associates with periodontitis and dental caries. Further longitudinal studies are warranted to evaluate if screening of salivary microbial activity of specific oral bacterial species and metabolic gene expression can identify periodontitis and dental caries at preclinical stages.Oral health: Signals from gene activity in salivaGenetic analysis of saliva reveals the activity of bacteria linked to gum disease and tooth decay and may prove useful in early diagnosis. Daniel Belstrøm and colleagues at the University of Copenhagen, Denmark, with co-workers at Nanyang Technological University in Singapore, analyzed saliva from 10 patients with periodontitis gum disease, 10 with dental caries and 10 with good oral health. DNA analysis revealed which bacteria were present, while examining RNA revealed which bacterial genes were most active. The procedure identified greater abundance and activity of bacteria linked to each specific oral condition in the oral disease groups, and also found distinctive bacterial activity in those people with good oral health. Further studies should investigate the possibility of testing bacterial gene activity in saliva to identify oral diseases before they become clinically evident.

Collaboration


Dive into the Daniela I. Drautz-Moses's collaboration.

Top Co-Authors

Avatar

Stephan C. Schuster

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Rikky W. Purbojati

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Caroline Chénard

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Nicolas E. Gaultier

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Uchida

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cassie E. Heinle

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Liang Yang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Anthony Wong

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge