Daniela J. Kraft
Leiden University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela J. Kraft.
Soft Matter | 2015
Joost R. Wolters; Guido Avvisati; Fabian Hagemans; Teun Vissers; Daniela J. Kraft; Marjolein Dijkstra; Willem K. Kegel
The self-assembly of anisotropic patchy particles with a triangular shape was studied by experiments and computer simulations. The colloidal particles were synthesized in a two-step seeded emulsion polymerization process, and consist of a central smooth lobe connected to two rough lobes at an angle of ∼90°, resembling the shape of a Mickey Mouse head. Due to the difference in overlap volume, adding an appropriate depletant induces an attractive interaction between the smooth lobes of the colloids only, while the two rough lobes act as steric constraints. The essentially planar geometry of the Mickey Mouse particles is a first geometric deviation of dumbbell shaped patchy particles. This new geometry enables the formation of one-dimensional tube-like structures rather than spherical, essentially zero-dimensional micelles. At sufficiently strong attractions, we indeed find tube-like structures with the sticky lobes at the core and the non-sticky lobes pointing out as steric constraints that limit the growth to one direction, providing the tubes with a well-defined diameter but variable length both in experiments and simulations. In the simulations, we found that the internal structure of the tubular fragments could either be straight or twisted into so-called Bernal spirals.
Scientific Reports | 2016
Casper van der Wel; Afshin Vahid; An djela Šarić; Timon Idema; Doris Heinrich; Daniela J. Kraft
The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (−3.3u2009kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles.
Advanced Materials | 2017
Truc Nguyen; Arthur C. Newton; Sandra J. Veen; Daniela J. Kraft; Peter G. Bolhuis; Peter Schall
Recent breakthroughs in colloidal synthesis promise the bottom-up assembly of superstructures on nano- and micrometer length scales, offering molecular analogues on the colloidal scale. However, a structural control similar to that in supramolecular chemistry remains very challenging. Here, colloidal superstructures are built and controlled using critical Casimir forces on patchy colloidal particles. These solvent-mediated forces offer direct analogues of molecular bonds, allowing patch-to-patch binding with exquisite temperature control of bond strength and stiffness. Particles with two patches are shown to form linear chains undergoing morphological changes with temperature, resembling a polymer collapse under poor-solvent conditions. This reversible temperature switching carries over to particles with higher valency, exhibiting a variety of patch-to-patch bonded structures. Using Monte Carlo simulations, it is shown that the collapse results from the growing interaction range favoring close-packed configurations. These results offer new opportunities for the active control of complex structures at the nano and micrometer scale, paving the way to novel temperature-switchable materials.
Langmuir | 2017
Casper van der Wel; Rohit K. Bhan; Ruben W. Verweij; Hans C. Frijters; Zhe Gong; Andrew D. Hollingsworth; Stefano Sacanna; Daniela J. Kraft
Colloidal particles of controlled size are promising building blocks for the self-assembly of functional materials. Here, we systematically study a method to synthesize monodisperse, micrometer-sized spheres from 3-(trimethoxysilyl)propyl methacrylate (TPM) in a benchtop experiment. Their ease of preparation, smoothness, and physical properties provide distinct advantages over other widely employed materials such as silica, polystyrene, and poly(methyl methacrylate). We describe that the spontaneous emulsification of TPM droplets in water is caused by base-catalyzed hydrolysis, self-condensation, and the deprotonation of TPM. By studying the time-dependent size evolution, we find that the droplet size increases without any detectable secondary nucleation. Resulting TPM droplets are polymerized to form solid particles. The particle diameter can be controlled in the range of 0.4 to 2.8 μm by adjusting the volume fraction of added monomer and the pH of the solution. Droplets can be grown to diameters of up to 4 μm by adding TPM monomer after the initial emulsification. Additionally, we characterize various physical parameters of the TPM particles, and we describe methods to incorporate several fluorescent dyes.
Biophysical Journal | 2017
Casper van der Wel; Doris Heinrich; Daniela J. Kraft
Understanding interactions between microparticles and lipid membranes is of increasing importance, especially for unraveling the influence of microplastics on our health and environment. Here, we study how a short-ranged adhesive force between microparticles and model lipid membranes causes membrane-mediated particle assembly. Using confocal microscopy, we observe the initial particle attachment to the membrane, then particle wrapping, and in rare cases spontaneous membrane tubulation. In the attached state, we measure that the particle mobility decreases by 26%. If multiple particles adhere to the same vesicle, their initial single-particle state determines their interactions and subsequent assembly pathways: 1) attached particles only aggregate when small adhesive vesicles are present in solution, 2) wrapped particles reversibly attract one another by membrane deformation, and 3) a combination of wrapped and attached particles form membrane-mediated dimers, which further assemble into a variety of complex structures. The experimental observation of distinct assembly pathways, induced only by a short-ranged membrane-particle adhesion, shows that a cytoskeleton or other active components are not required for microparticle aggregation. We suggest that this membrane-mediated microparticle aggregation is a reason behind reported long retention times of polymer microparticles in organisms.
Materials | 2017
Truc Nguyen; Arthur C. Newton; Daniela J. Kraft; Peter G. Bolhuis; Peter Schall
Experimental control of patchy interactions promises new routes for the assembly of complex colloidal structures, but remains challenging. Here, we investigate the role of patch width in the assembly of patchy colloidal particles assembled by critical Casimir forces. The particles are composed of a hydrophobic dumbbell with an equatorial hydrophilic polymer shell, and are synthesized to have well-defined patch-to-shell area ratios. Patch-to-patch binding is achieved in near-critical binary solvents, in which the particle interaction strength and range are controlled by the temperature-dependent solvent correlation length. Upon decreasing the patch-to-shell area ratio, we observe a pronounced change of the bonding morphology towards directed single-bonded configurations, as clearly reflected in the formation of chain-like structures. Computer simulations using an effective critical Casimir pair potential for the patches show that the morphology change results from the geometric exclusion of the increasingly thick hydrophilic particle shells. These results highlight the experimental control of patchy interactions through the engineering of the building blocks on the way towards rationally designed colloidal superstructures.
Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2016
Margot Segers; Marjolein Sliepen; Daniela J. Kraft; Martin Möller; Pascal Buskens
Soft Matter | 2017
Arthur C. Newton; T. Anh Nguyen; Sandra J. Veen; Daniela J. Kraft; Peter Schall; Peter G. Bolhuis
Archive | 2018
Melissa Rinaldin; Ruben W. Verweij; Indrani Chakraborty; Daniela J. Kraft
Soft Matter | 2017
Vera Meester; Daniela J. Kraft