Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Lalli is active.

Publication


Featured researches published by Daniela Lalli.


Proceedings of the National Academy of Sciences of the United States of America | 2010

NMR reveals pathway for ferric mineral precursors to the central cavity of ferritin

Paola Turano; Daniela Lalli; Isabella C. Felli; Elizabeth C. Theil; Ivano Bertini

Ferritin is a multimeric nanocage protein that directs the reversible biomineralization of iron. At the catalytic ferroxidase site two iron(II) ions react with dioxygen to form diferric species. In order to study the pathway of iron(III) from the ferroxidase site to the central cavity a new NMR strategy was developed to manage the investigation of a system composed of 24 monomers of 20 kDa each. The strategy is based on 13C-13C solution NOESY experiments combined with solid-state proton-driven 13C-13C spin diffusion and 3D coherence transfer experiments. In this way, 75% of amino acids were recognized and 35% sequence-specific assigned. Paramagnetic broadening, induced by iron(III) species in solution 13C-13C NOESY spectra, localized the iron within each subunit and traced the progression to the central cavity. Eight iron ions fill the 20-Å-long iron channel from the ferrous/dioxygen oxidoreductase site to the exit into the cavity, inside the four-helix bundle of each subunit, contrasting with short paths in models. Magnetic susceptibility data support the formation of ferric multimers in the iron channels. Multiple iron channel exits are near enough to facilitate high concentration of iron that can mineralize in the ferritin cavity, illustrating advantages of the multisubunit cage structure.


Journal of the American Chemical Society | 2012

Structural insights into the ferroxidase site of ferritins from higher eukaryotes.

Ivano Bertini; Daniela Lalli; Stefano Mangani; Cecilia Pozzi; Camilla Rosa; Elizabeth C. Theil; Paola Turano

The first step of iron biomineralization mediated by ferritin is the oxidation at the ferroxidase active site of two ferrous ions to a diferric oxo/hydroxo species. Metal-loaded ferritin crystals obtained by soaking crystals of frog ferritin in FeSO(4) and CuSO(4) solutions followed by flash freezing provided X-ray crystal structures of the tripositive iron and bipositive copper adducts at 2.7 and 2.8 Å resolution, respectively. At variance with the already available structures, the crystal form used in this study contains 24 independent subunits in the asymmetric unit permitting comparison between them. For the first time, the diferric species at the ferroxidase site is identified in ferritins from higher eukaryotes. Anomalous difference Fourier maps for crystals (iron crystal 1) obtained after long soaking times in FeSO(4) solution invariantly showed diferric species with a Fe-Fe average distance of 3.1 ± 0.1 Å, strongly indicative of the presence of a μ-oxo/hydroxo bridge between the irons; protein ligands for each iron ion (Fe1 and Fe2) were also unequivocally identified and found to be the same in all subunits. For copper bound ferritin, dicopper(II) centers are also observed. While copper at site 1 is essentially in the same position and has the same coordination environment as Fe1, copper at site 2 is displaced toward His54, now acting as a ligand; this results in an increased intermetal distance (4.3 ± 0.4 Å). His54 coordination and longer metal-metal distances might represent peculiar features of divalent cations at the ferroxidase site. This oxidation-dependent structural information may provide key features for the mechanistic pathway in ferritins from higher eukaryotes that drive uptake of bivalent cation and release of ferric products at the catalytic site. This mechanism is supported by the X-ray picture obtained after only 1 min of soaking in FeSO(4) solutions (iron crystal 2) which reasonably contain the metal at different oxidation states. Here two different di-iron species are trapped in the active site, with intermetal distances corresponding to those of the ferric dimer in crystal 1 and of the dicopper centers and corresponding rearrangement of the His54 side chain.


PLOS Pathogens | 2014

A Relay Network of Extracellular Heme-Binding Proteins Drives C. albicans Iron Acquisition from Hemoglobin

Galit Kuznets; Elena Vigonsky; Ziva Weissman; Daniela Lalli; Tsvia Gildor; Sarah Kauffman; Paola Turano; Jeffrey M. Becker; Oded Lewinson; Daniel Kornitzer

Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the hosts body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7−/− mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.


PLOS ONE | 2011

The Anti-Apoptotic Bcl-xL Protein, a New Piece in the Puzzle of Cytochrome C Interactome

Ivano Bertini; Soizic Chevance; Rebecca Del Conte; Daniela Lalli; Paola Turano

A structural model of the adduct between human cytochrome c and the human anti-apoptotic protein Bcl-xL, which defines the protein-protein interaction surface, was obtained from solution NMR chemical shift perturbation data. The atomic level information reveals key intermolecular contacts identifying new potentially druggable areas on cytochrome c and Bcl-xL. Involvement of residues on cytochrome c other than those in its complexes with electron transfer partners is apparent. Key differences in the contact area also exist between the Bcl-xL adduct with the Bak peptide and that with cytochrome c. The present model provides insights to the mechanism by which cytochrome c translocated to cytosol can be intercepted, so that the apoptosome is not assembled.


Acta Crystallographica Section D-biological Crystallography | 2015

Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites.

Cecilia Pozzi; Flavio Di Pisa; Daniela Lalli; Camilla Rosa; Elizabeth C. Theil; Paola Turano; Stefano Mangani

Ferritin superfamily protein cages reversibly synthesize internal biominerals, Fe2O3·H2O. Fe(2+) and O2 (or H2O2) substrates bind at oxidoreductase sites in the cage, initiating biomineral synthesis to concentrate iron and prevent potentially toxic reactions products from Fe(2+)and O2 or H2O2 chemistry. By freezing ferritin crystals of Rana catesbeiana ferritin M (RcMf) at different time intervals after exposure to a ferrous salt, a series of high-resolution anomalous X-ray diffraction data sets were obtained that led to crystal structures that allowed the direct observation of ferrous ions entering, moving along and binding at enzyme sites in the protein cages. The ensemble of crystal structures from both aerobic and anaerobic conditions provides snapshots of the iron substrate bound at different cage locations that vary with time. The observed differential occupation of the two iron sites in the enzyme oxidoreductase centre (with Glu23 and Glu58, and with Glu58, His61 and Glu103 as ligands, respectively) and other iron-binding sites (with Glu53, His54, Glu57, Glu136 and Asp140 as ligands) reflects the approach of the Fe(2+) substrate and its progression before the enzymatic cycle 2Fe(2+) + O2 → Fe(3+)-O-O-Fe(3+) → Fe(3+)-O(H)-Fe(3+) and turnover. The crystal structures also revealed different Fe(2+) coordination compounds bound to the ion channels located at the threefold and fourfold symmetry axes of the cage.


Accounts of Chemical Research | 2013

Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage.

Daniela Lalli; Paola Turano

Ferritins are intracellular proteins that can store thousands of iron(III) ions as a solid mineral. These structures autoassemble from four-helix bundle subunits to form a hollow sphere and are a prototypical example of protein nanocages. The protein acts as a reservoir, encapsulating iron as ferric oxide in its central cavity in a nontoxic and bioavailable form. Scientists have long known the structural details of the protein shell, owing to very high resolution X-ray structures of the apoform. However, the atomic level mechanism governing the multistep biomineralization process remained largely elusive. Through analysis of the chemical behavior of ferritin mutants, chemists have found the role of some residues in key reaction steps. Using Mössbauer and XAS, they have identified some di-iron intermediates of the catalytic reaction trapped by rapid freeze quench. However, structural information about the iron interaction sites remains scarce. The entire process is governed by a number of specific, but weak, interactions between the protein shell and the iron species moving across the cage. While this situation may constitute a major problem for crystallography, NMR spectroscopy represents an optimal tool to detect and characterize transient species involving soluble proteins. Regardless, NMR analysis of the 480 kDa ferritin represents a real challenge. Our interest in ferritin chemistry inspired us to use an original combination of solution and solid state approaches. While the highly symmetric structure of the homo-24-mer frog ferritin greatly simplifies the spectra, the large protein size hinders the efficient coherence transfer in solution, thus preventing the sequence specific assignments. In contrast, extensive (13)C-spin diffusion makes the solution (13)C-(13)C NOESY experiment our gold standard to monitor protein side chains both in the apoprotein alone and in its interaction with paramagnetic iron species, inducing line broadening on the resonances of nearby residues. We could retrieve the structural information embedded in the (13)C-(13)C NOESY due to a partial sequence specific assignment of protein backbone and side chains we obtained from solid state MAS NMR of ferritin microcrystals. We used the 59 assigned amino acids (∼33% of the total) as probes to locate paramagnetic ferric species in the protein cage. Through this approach, we could identify ferric dimers at the ferroxidase site and on their pathway towards the nanocage. Comparison with existing data on bacterioferritins and bacterial ferritins, as well as with eukaryotic ferritins loaded with various nonfunctional divalent ions, allowed us to reinterpret the available information. The resulting picture of the ferroxidase site is slightly different with various ferritins but is designed to provide multiple and generally weak iron ligands. The latter assist binding of two incoming iron(II) ions in two proximal positions to facilitate coupling with oxygen. Subsequent oxidation is accompanied by a decrease in the metal-metal distance (consistent with XAS/Mössbauer) and in the number of protein residues involved in metal coordination, facilitating the release of products as di-iron clusters under the effect of new incoming iron(II) ions.


ChemMedChem | 2010

Fragmenting the S100B-p53 interaction: combined virtual/biophysical screening approaches to identify ligands.

Mariangela Agamennone; Lucia Cesari; Daniela Lalli; Elisa Turlizzi; Rebecca Del Conte; Paola Turano; Stefano Mangani; Alessandro Padova

S100B contributes to cell proliferation by binding the C terminus of p53 and inhibiting its tumor suppressor function. The use of multiple computational approaches to screen fragment libraries targeting the human S100B–p53 interaction site is reported. This in silico screening led to the identification of 280 novel prospective ligands. NMR spectroscopic experiments revealed specific binding at the p53 interaction site for a set of these compounds and confirmed their potential for further rational optimization. The X‐ray crystal structure determined for one of the binders revealed key intermolecular interactions, thus paving the way for structure‐based ligand optimization.


Journal of the American Chemical Society | 2017

Proton-Based Structural Analysis of a Heptahelical Transmembrane Protein in Lipid Bilayers

Daniela Lalli; Matthew N. Idso; Loren B. Andreas; Sunyia Hussain; Naomi Baxter; Songi Han; Bradley F. Chmelka; Guido Pintacuda

The structures and properties of membrane proteins in lipid bilayers are expected to closely resemble those in native cell-membrane environments, although they have been difficult to elucidate. By performing solid-state NMR measurements at very fast (100 kHz) magic-angle spinning rates and at high (23.5 T) magnetic field, severe sensitivity and resolution challenges are overcome, enabling the atomic-level characterization of membrane proteins in lipid environments. This is demonstrated by extensive 1H-based resonance assignments of the fully protonated heptahelical membrane protein proteorhodopsin, and the efficient identification of numerous 1H–1H dipolar interactions, which provide distance constraints, inter-residue proximities, relative orientations of secondary structural elements, and protein–cofactor interactions in the hydrophobic transmembrane regions. These results establish a general approach for high-resolution structural studies of membrane proteins in lipid environments via solid-state NMR.


Journal of Physical Chemistry Letters | 2017

Selective 1H–1H Distance Restraints in Fully Protonated Proteins by Very Fast Magic-Angle Spinning Solid-State NMR

Mukul G. Jain; Daniela Lalli; Jan Stanek; Chandrakala M. Gowda; Satya Prakash; Tom Sebastian Schwarzer; Tobias Schubeis; Kathrin Castiglione; Loren B. Andreas; P.K. Madhu; Guido Pintacuda; Vipin Agarwal

Very fast magic-angle spinning (MAS > 80 kHz) NMR combined with high-field magnets has enabled the acquisition of proton-detected spectra in fully protonated solid samples with sufficient resolution and sensitivity. One of the primary challenges in structure determination of protein is observing long-range 1H-1H contacts. Here we use band-selective spin-lock pulses to obtain selective 1H-1H contacts (e.g., HN-HN) on the order of 5-6 Å in fully protonated proteins at 111 kHz MAS. This approach is a major advancement in structural characterization of proteins given that magnetization can be selectively transferred between protons that are 5-6 Å apart despite the presence of other protons at shorter distance. The observed contacts are similar to those previously observed only in perdeuterated proteins with selective protonation. Simulations and experiments show the proposed method has performance that is superior to that of the currently used methods. The method is demonstrated on GB1 and a β-barrel membrane protein, AlkL.


Journal of Biological Chemistry | 2015

A Major Determinant for Gliding Motility in Mycoplasma genitalium: THE INTERACTION BETWEEN THE TERMINAL ORGANELLE PROTEINS MG200 AND MG491*

Luca Martinelli; Daniela Lalli; Luis García-Morales; Mercè Ratera; Enrique Querol; Jaume Piñol; Ignacio Fita; Bárbara M. Calisto

Background: The terminal organelle is responsible for a new type of cell motility in mycoplasmas. Results: In this work, the specific interaction between the terminal organelle proteins MG200 and MG491 was identified and characterized by SPR and NMR. Conclusion: The MG200-MG491 interaction affects motility and cell morphology. Significance: The MG200-MG491 interaction, critical for the stability of the terminal organelle, might be determinant for the infectiveness of M. genitalium. Several mycoplasmas, such as the emergent human pathogen Mycoplasma genitalium, developed a complex polar structure, known as the terminal organelle (TO), responsible for a new type of cellular motility, which is involved in a variety of cell functions: cell division, adherence to host cells, and virulence. The TO cytoskeleton is organized as a multisubunit dynamic motor, including three main ultrastructures: the terminal button, the electrodense core, and the wheel complex. Here, we describe the interaction between MG200 and MG491, two of the main components of the TO wheel complex that connects the TO with the cell body and the cell membrane. The interaction between MG200 and MG491 has a KD in the 80 nm range, as determined by surface plasmon resonance. The interface between the two partners was confined to the “enriched in aromatic and glycine residues” (EAGR) box of MG200, previously described as a protein-protein interaction domain, and to a 25-residue-long peptide from the C-terminal region of MG491 by surface plasmon resonance and NMR spectroscopy studies. An atomic description of the MG200 EAGR box binding surface was also provided by solution NMR. An M. genitalium mutant lacking the MG491 segment corresponding to the peptide reveals specific alterations in cell motility and cell morphology indicating that the MG200-MG491 interaction plays a key role in the stability and functioning of the TO.

Collaboration


Dive into the Daniela Lalli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Kornitzer

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Elena Vigonsky

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Galit Kuznets

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Oded Lewinson

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tsvia Gildor

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ziva Weissman

Rappaport Faculty of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge