Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela M. Ferreira is active.

Publication


Featured researches published by Daniela M. Ferreira.


PLOS Pathogens | 2010

Pneumolysin Activates the NLRP3 Inflammasome and Promotes Proinflammatory Cytokines Independently of TLR4

Edel A. McNeela; Áine Burke; Daniel R. Neill; Cathy Baxter; Vitor E. Fernandes; Daniela M. Ferreira; Sarah Smeaton; Rana G. El-Rachkidy; Rachel M. McLoughlin; Andres Mori; Barry Moran; Katherine A. Fitzgerald; Jürg Tschopp; Virginie Pétrilli; Peter W. Andrew; Aras Kadioglu; Ed C. Lavelle

Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1β, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1β plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1β secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system.


Clinical and Vaccine Immunology | 2009

Characterization of Protective Mucosal and Systemic Immune Responses Elicited by Pneumococcal Surface Protein PspA and PspC Nasal Vaccines against a Respiratory Pneumococcal Challenge in Mice

Daniela M. Ferreira; Michelle Darrieux; D. A. Silva; Luciana C.C. Leite; Jorge M. C. Ferreira; Paulo Lee Ho; Eliane N. Miyaji; Maria Leonor S. Oliveira

ABSTRACT Pneumococcal surface protein A (PspA) and PspC are virulence factors that are involved in the adhesion of Streptococcus pneumoniae to epithelial cells and/or evasion from the immune system. Here, the immune responses induced by mucosal vaccines composed of both antigens as recombinant proteins or delivered by Lactobacillus casei were evaluated. None of the PspC vaccines protected mice against an invasive challenge with pneumococcal strain ATCC 6303. On the other hand, protection was observed for immunization with vaccines composed of PspA from clade 5 (PspA5 or L. casei expressing PspA5) through the intranasal route. The protective response was distinguished by a Th1 profile with high levels of immunoglobulin G2a production, efficient complement deposition, release of proinflammatory cytokines, and infiltration of neutrophils. Intranasal immunization with PspA5 elicited the highest level of protection, characterized by increased levels of secretion of interleukin-17 and gamma interferon by lung and spleen cells, respectively, and low levels of tumor necrosis factor alpha in the respiratory tract.


American Journal of Respiratory and Critical Care Medicine | 2013

Controlled Human Infection and Rechallenge with Streptococcus pneumoniae Reveals the Protective Efficacy of Carriage in Healthy Adults

Daniela M. Ferreira; Daniel R. Neill; Mathieu Bangert; Jenna F. Gritzfeld; Nicola Green; Adam K. A. Wright; Shaun H. Pennington; Laura Moreno; Adriana T. Moreno; Eliane N. Miyaji; Angela D. Wright; Andrea Collins; David Goldblatt; Aras Kadioglu; Stephen B. Gordon

RATIONALE The immunological and protective role of pneumococcal carriage in healthy adults is not known, but high rates of disease and death in the elderly are associated with low carriage prevalence. OBJECTIVES We employed an experimental human pneumococcal carriage model to investigate the immunizing effect of a single carriage episode. METHODS Seventy healthy adults were challenged, and of those with carriage, 10 were rechallenged intranasally with live 6B Streptococcus pneumoniae up to 11 months after clearance of the first carriage episode. Serum and nasal wash antibody responses were measured before and after each challenge. MEASUREMENTS AND MAIN RESULTS A total of 29 subjects were experimentally colonized. No subjects were colonized by experimental rechallenge, demonstrating the protective effect of initial carriage against subsequent infection. Carriage increased both mucosal and serum IgG levels to pneumococcal proteins and polysaccharide, resulting in a fourfold increase in opsonophagocytic activity. Importantly, passive transfer of postcarriage sera from colonized subjects conferred 70% protection against lethal challenge by a heterologous strain in a murine model of invasive pneumococcal pneumonia. These levels were significantly higher than the protection conferred by either precarriage sera (30%) or saline (10%). CONCLUSIONS Experimental human carriage resulted in mucosal and systemic immunological responses that conferred protection against recolonization and invasive pneumococcal disease. These data suggest that mucosal pneumococcal vaccination strategies may be important for vulnerable patient groups, particularly the elderly, who do not sustain carriage.


Immunobiology | 2010

The immunising effect of pneumococcal nasopharyngeal colonisation; protection against future colonisation and fatal invasive disease

Luke Richards; Daniela M. Ferreira; Eliane N. Miyaji; Peter W. Andrew; Aras Kadioglu

The human nasopharynx is an important ecological niche for Streptococcus pneumoniae, and asymptomatic nasopharyngeal carriage is a common precursor to invasive disease. However, knowledge of the immunological events, which occur during carriage, both on a cellular and humoral level, remains limited. Here, we present a long-term stable model of asymptomatic nasopharyngeal carriage using outbred naïve mice, in which we have investigated the effect of previous nasopharyngeal exposure to pneumococci, in the prevention of subsequent carriage and invasive disease. Carriage of D39 wildtype pneumococci restricted to the nasopharynx could be detected for at least 28 days post-infection, whereas nasopharyngeal carriage of a pneumolysin negative isogenic mutant (PLN-A) was cleared in 7-14 days. Both carriage events induced total and capsule specific IgA mucosal antibodies and increased levels of systemic antibodies (IgG against pneumococcal surface protein A (PspA) and IgM capsular polysaccharide), which increased over time and correlated to reduced nasopharyngeal pneumococcal numbers. Prior nasopharyngeal colonisation with PLN-A significantly reduced the duration of subsequent D39 wildtype carriage, and significantly increased survival following invasive pneumococcal challenge. In this case systemic anti-PspA and anti-capsular antibody IgM concentrations showed a strong correlation with reduced bacterial numbers in the lungs and nasopharynx, respectively and also with increased levels of IL17A and CD4+ T cells in lungs of pre-colonised mice. Prior nasopharyngeal colonisation with PLN-A also resulted in significant cross-serotype protection with mice protected from invasive disease with serotype 3 strain (A66) after pre-colonisation with a serotype 2 strain (D39). Our results suggest that both mucosal and systemic antibody as well as cellular host factors have a role in long-term protection against both colonisation and invasive pneumococcal challenge.


Clinical and Vaccine Immunology | 2010

Immunization of Mice with Single PspA Fragments Induces Antibodies Capable of Mediating Complement Deposition on Different Pneumococcal Strains and Cross-Protection

Adriana T. Moreno; Maria Leonor S. Oliveira; Daniela M. Ferreira; Paulo L. Ho; Michelle Darrieux; Luciana C.C. Leite; Jorge M. C. Ferreira; Fabiana Cristina Pimenta; Ana Lucia Andrade; Eliane N. Miyaji

ABSTRACT PspA is an important candidate for a vaccine with serotype-independent immunity against pneumococcal infections. Based on sequence relatedness, PspA has been classified into three families comprising six clades. We have previously addressed the cross-reactivity of antibodies against PspA fragments containing the N-terminal and proline-rich regions of PspA from clades 1 to 5 (PspA1, PspA2, PspA3, PspA4, and PspA5) by Western blot analysis and reported that anti-PspA4 and anti-PspA5 were able to recognize pneumococci expressing PspA proteins from all of the clades analyzed. We have now analyzed the functional capacity of these antibodies to bind and to mediate complement deposition on intact bacteria in vitro. Our results show that both PspA4 and PspA5 elicit antibodies that are able to bind and to mediate complement deposition efficiently on pneumococcal strains bearing PspA proteins from clades 1 to 5. Moreover, mice immunized with PspA4 and PspA5 were protected against an intranasal lethal challenge with strains expressing PspA proteins from the two major families. PspA4 and PspA5 are thus able to induce antibodies with a high degree of cross-reactivity in vitro, which is reflected in cross-protection of mice. We have also analyzed the contribution of the nonproline (NonPro) block within the conserved proline-rich region to the reactivity of anti-PspA antibodies, and the results indicate that N-terminal α-helical region, the blocks of proline repeats, and the NonPro region can influence the degree of cross-reactivity of antibodies to PspA.


Infection and Immunity | 2007

Fusion Proteins Containing Family 1 and Family 2 PspA Fragments Elicit Protection against Streptococcus pneumoniae That Correlates with Antibody-Mediated Enhancement of Complement Deposition

Michelle Darrieux; Eliane N. Miyaji; Daniela M. Ferreira; L. M. Lopes; Alexandre P. Y. Lopes; B. Ren; David E. Briles; S. K. Hollingshead; Luciana C.C. Leite

ABSTRACT PspA is an important pneumococcal vaccine candidate that is capable of inducing protection in different animal models. Because of its structural diversity, a PspA-based vaccine should contain at least one fragment from each of the two major families (1 and 2) in order to elicit broader protection. In the present work, we have tested the potential of PspA hybrids containing fused portions of family 1 and 2 (PspA1ABC-4B and PspA1ABC-3AB) PspA fragments to induce protection against pneumococci bearing distinct PspA fragments. Sera from mice immunized with these hybrid PspA fragments were able to increase C3 deposition on pneumococci bearing PspA fragments from both families, in contrast with sera made against the PspA family 1 (PspA1ABC) and PspA family 2 (PspA3ABC) fragments, which were effective only within the same family. Although PspA hybrids were able to extend protection against pneumococcal infection with strains bearing diverse PspA fragments, the immunity elicited by family 2 was clade dependent, suggesting that PspA fragments from family 2 clades 3 and 4 should both be included in a comprehensive PspA vaccine. These results indicate that PspA fusion proteins constitute an efficient immunization strategy for future PspA-based antipneumococcal vaccines since they are able to extend protection provided by a protein derived from a single transcript.


PLOS Pathogens | 2013

Experimental Human Pneumococcal Carriage Augments IL-17A-dependent T-cell Defence of the Lung

Adam K. A. Wright; Mathieu Bangert; Jenna F. Gritzfeld; Daniela M. Ferreira; Kondwani C. Jambo; Angela D. Wright; Andrea Collins; Stephen B. Gordon

Pneumococcal carriage is both immunising and a pre-requisite for mucosal and systemic disease. Murine models of pneumococcal colonisation show that IL-17A-secreting CD4+ T-cells (Th-17 cells) are essential for clearance of pneumococci from the nasopharynx. Pneumococcal-responding IL-17A-secreting CD4+ T-cells have not been described in the adult human lung and it is unknown whether they can be elicited by carriage and protect the lung from pneumococcal infection. We investigated the direct effect of experimental human pneumococcal nasal carriage (EHPC) on the frequency and phenotype of cognate CD4+ T-cells in broncho-alveolar lavage and blood using multi-parameter flow cytometry. We then examined whether they could augment ex vivo alveolar macrophage killing of pneumococci using an in vitro assay. We showed that human pneumococcal carriage leads to a 17.4-fold (p = 0.007) and 8-fold (p = 0.003) increase in the frequency of cognate IL-17A+ CD4+ T-cells in BAL and blood, respectively. The phenotype with the largest proportion were TNF+/IL-17A+ co-producing CD4+ memory T-cells (p<0.01); IFNγ+ CD4+ memory T-cells were not significantly increased following carriage. Pneumococci could stimulate large amounts of IL-17A protein from BAL cells in the absence of carriage but in the presence of cognate CD4+ memory T-cells, IL-17A protein levels were increased by a further 50%. Further to this we then show that alveolar macrophages, which express IL-17A receptors A and C, showed enhanced killing of opsonised pneumococci when stimulated with rhIL-17A (p = 0.013). Killing negatively correlated with RC (r = −0.9, p = 0.017) but not RA expression. We conclude that human pneumococcal carriage can increase the proportion of lung IL-17A-secreting CD4+ memory T-cells that may enhance innate cellular immunity against pathogenic challenge. These pathways may be utilised to enhance vaccine efficacy to protect the lung against pneumonia.


Journal of Medical Microbiology | 2008

Recognition of pneumococcal isolates by antisera raised against PspA fragments from different clades

Michelle Darrieux; Adriana T. Moreno; Daniela M. Ferreira; Fabiana Cristina Pimenta; Ana Lucia Andrade; Alexandre P. Y. Lopes; Luciana C.C. Leite; Eliane N. Miyaji

Pneumococcal surface protein A (PspA) is an important vaccine candidate against pneumococcal infections, capable of inducing protection in different animal models. Based on its structural diversity, it has been suggested that a PspA-based vaccine should contain at least one fragment from each of the two major families (family 1, comprising clades 1 and 2, and family 2, comprising clades 3, 4 and 5) in order to elicit broad protection. This study analysed the recognition of a panel of 35 pneumococcal isolates bearing different PspAs by antisera raised against the N-terminal regions of PspA clades 1 to 5. The antiserum to PspA clade 4 was found to show the broadest cross-reactivity, being able to recognize pneumococcal strains containing PspAs of all clades in both families. The cross-reactivity of antibodies elicited against a PspA hybrid including the N-terminal region of clade 1 fused to a shorter and more divergent fragment (clade-defining region, or CDR) of clade 4 (PspA1-4) was also tested, and revealed a strong recognition of isolates containing clades 1, 4 and 5, and weaker reactions with clades 2 and 3. The analysis of serum reactivity against different PspA regions further revealed that the complete N-terminal region rather than just the CDR should be included in an anti-pneumococcal vaccine. A PspA-based vaccine is thus proposed to be composed of the whole N-terminal region of clades 1 and 4, which could also be expressed as a hybrid protein.


PLOS Pathogens | 2012

T Regulatory Cells Control Susceptibility to Invasive Pneumococcal Pneumonia in Mice

Daniel R. Neill; Vitor E. Fernandes; Laura Wisby; Andrew R. Haynes; Daniela M. Ferreira; Ameera Laher; Natalie Strickland; Stephen B. Gordon; Paul Denny; Aras Kadioglu; Peter W. Andrew

Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design.


Microbes and Infection | 2008

Nasal immunization of mice with Lactobacillus casei expressing the Pneumococcal Surface Protein A: induction of antibodies, complement deposition and partial protection against Streptococcus pneumoniae challenge

Ivana B. Campos; Michelle Darrieux; Daniela M. Ferreira; Eliane N. Miyaji; Débora A. Silva; Ana Paula Mattos Arêas; Karina Araújo Aires; Luciana C.C. Leite; Paulo L. Ho; Maria Leonor S. Oliveira

Strategies for the development of new vaccines against Streptococcus pneumoniae infections try to overcome problems such as serotype coverage and high costs, present in currently available vaccines. Formulations based on protein candidates that can induce protection in animal models have been pointed as good alternatives. Among them, the Pneumococcal Surface Protein A (PspA) plays an important role during systemic infection at least in part through the inhibition of complement deposition on the pneumococcal surface, a mechanism of evasion from the immune system. Antigen delivery systems based on live recombinant lactic acid bacteria (LAB) represents a promising strategy for mucosal vaccination, since they are generally regarded as safe bacteria able to elicit both systemic and mucosal immune responses. In this work, the N-terminal region of clade 1 PspA was constitutively expressed in Lactobacillus casei and the recombinant bacteria was tested as a mucosal vaccine in mice. Nasal immunization with L. casei-PspA 1 induced anti-PspA antibodies that were able to bind to pneumococcal strains carrying both clade 1 and clade 2 PspAs and to induce complement deposition on the surface of the bacteria. In addition, an increase in survival of immunized mice after a systemic challenge with a virulent pneumococcal strain was observed.

Collaboration


Dive into the Daniela M. Ferreira's collaboration.

Top Co-Authors

Avatar

Stephen B. Gordon

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenna F. Gritzfeld

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Andrea Collins

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Angela D. Wright

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Elena Mitsi

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaun H. Pennington

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Jesús Reiné

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Jamie Rylance

Liverpool School of Tropical Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge