Daniela Mara de Oliveira
University of Brasília
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Mara de Oliveira.
Epilepsy & Behavior | 2011
Fernanda Elisa Rosim; Daniele Suzete Persike; Astrid Nehlig; Rebeca Padrão Amorim; Daniela Mara de Oliveira; Maria José da Silva Fernandes
Aiming at a better understanding of the role of A(2A) in temporal lobe epilepsy (TLE), we characterized the effects of the A(2A) antagonist SCH58261 (7-(2-phenylethyl)-5-amino-2(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) on seizures and neuroprotection in the pilocarpine model. The effects of SCH58261 were further analyzed in combination with the A(1) agonist R-Pia (R(-)-N(6)-(2)-phenylisopropyl adenosine). Eight groups were studied: pilocarpine (Pilo), SCH+Pilo, R-Pia+Pilo, R-Pia+SCH+Pilo, Saline, SCH+Saline, R-Pia+Saline, and R-Pia+SCH+Saline. The administration of SCH58261, R-Pia, and R-Pia+SCH58261 prior to pilocarpine increased the latency to SE, and decreased either the incidence of or rate of mortality from SE compared with controls. Administration of R-Pia and R-Pia+SCH58261 prior to pilocarpine reduced the number of Fluoro-Jade B-stained cells in the hippocampus and piriform cortex when compared with control. This study showed that pretreatment with R-Pia and SCH58261 reduces seizure occurrence, although only R-Pia has neuroprotective properties. Further studies are needed to clarify the neuroprotective role of A(2A) in TLE.
Stem Cell Research & Therapy | 2016
Daniela Abreu de Moraes; Tatiana Tais Sibov; Lorena Favaro Pavon; Paula Queiroz Alvim; Raphael Severino Bonadio; Jaqueline Rodrigues da Silva; Aline Pic-Taylor; Orlando Ayrton de Toledo; Luciana Cavalheiro Marti; Ricardo Bentes Azevedo; Daniela Mara de Oliveira
BackgroundMesenchymal stromal cells (MSCs) are multipotent progenitor cells used in several cell therapies. MSCs are characterized by the expression of CD73, CD90, and CD105 cell markers, and the absence of CD34, CD45, CD11a, CD19, and HLA-DR cell markers. CD90 is a glycoprotein present in the MSC membranes and also in adult cells and cancer stem cells. The role of CD90 in MSCs remains unknown. Here, we sought to analyse the role that CD90 plays in the characteristic properties of in vitro expanded human MSCs.MethodsWe investigated the function of CD90 with regard to morphology, proliferation rate, suppression of T-cell proliferation, and osteogenic/adipogenic differentiation of MSCs by reducing the expression of this marker using CD90-target small hairpin RNA lentiviral vectors.ResultsThe present study shows that a reduction in CD90 expression enhances the osteogenic and adipogenic differentiation of MSCs in vitro and, unexpectedly, causes a decrease in CD44 and CD166 expression.ConclusionOur study suggests that CD90 controls the differentiation of MSCs by acting as an obstacle in the pathway of differentiation commitment. This may be overcome in the presence of the correct differentiation stimuli, supporting the idea that CD90 level manipulation may lead to more efficient differentiation rates in vitro.
Einstein (São Paulo) | 2012
Tatiana Tais Sibov; Liza Aya Mabuchi Miyaki; Javier Bustamante Mamani; Luciana Cavalheiro Marti; Luiz Roberto Sardinha; Lorena Favaro Pavon; Daniela Mara de Oliveira; Walter Humberto Zavala Cárdenas; Lionel Fernel Gamarra
OBJECTIVE The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. METHODS The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37°C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxy-fluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. RESULTS mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine continue to proliferate over seven days and the percentage of cells in early or late apoptosis is low compared to the percentage of live cells over the three days. CONCLUSION Our results showed that the use of poly-L-lysine complexed with superparamagnetic iron oxide nanoparticles/dextran provides better internalization of these superparamagnetic iron oxide nanoparticles in mesenchymal stem cells Thus, we demonstrated that this type of labeling is not cytotoxic to the mesenchymal stem cells, since the viability and apoptosis assays showed that the cells remain alive and proliferating. The efficiency of this type of labeling in mesenchymal stem cells can provide non-invasive methods for monitoring these cells in vivo.
Nanomedicine: Nanotechnology, Biology and Medicine | 2017
Ana Lygia dos Santos Câmara; Gregor Nagel; Harald Rune Tschiche; Camila Magalhães Cardador; Luis Alexandre Muehlmann; Daniela Mara de Oliveira; Paula Queiroz Alvim; Ricardo Bentes Azevedo; Marcelo Calderón; João Paulo Figueiró Longo
AIM To develop an acid-sensitive lipidated, doxorubicin (Dox) prodrug (C16-Dox) to be entrapped in lipid nanoemulsion (NE-C16-Dox) as a nanocarrier to treat breast cancer models (in vitro and in vivo). RESULTS We report the efficacy of NE-C16-Dox in in vitro experiments, as well as the improved chemotherapeutic index and tumor-control efficacy compared with treatment with free Dox in an in vivo murine 4T1 breast cancer model. In addition, NE-C16-Dox allowed the use of a higher dose of Dox, acceptable biocompatibility and a significant reduction in lung metastasis. CONCLUSION Taken together, these results indicate that NE-C16-Dox is promising for breast cancer treatment, thus creating possibilities to translate these nanotechnology concepts to clinical applications.
Oncotarget | 2016
Lorena Favaro Pavon; Tatiana Tais Sibov; Daniela Mara de Oliveira; Luciana C. Marti; Francisco Romero Cabral; Jean Gabriel de Souza; Pamela Boufleur; Suzana Maria Fleury Malheiros; Manuel A. de Paiva Neto; Edgard Ferreira da Cruz; Ana Marisa Chudzinski-Tavassi; Sergio Cavalheiro
Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patients tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types.
Oncotarget | 2018
Lorena Favaro Pavon; Tatiana Tais Sibov; Silvia Regina Caminada de Toledo; Daniela Mara de Oliveira; Francisco Romero Cabral; Jean Gabriel de Souza; Pamela Boufleur; Luciana Cavalheiro Marti; Jackeline Moraes Malheiros; Edgar Ferreira da Cruz; Fernando F. Paiva; Suzana Maria Fleury Malheiros; Manoel Antonio de Paiva Neto; Alberto Tannús; Sérgio Mascarenhas de Oliveira; Nasjla Saba da Silva; Andrea Cappellano; Antonio Sergio Petrilli; Ana Marisa Chudzinski-Tavassi; Sergio Cavalheiro
Background Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. Results We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. Conclusions We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. Methods In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.
Journal of Materials Chemistry B | 2018
Marina Arantes Radicchi; Jaqueline Vaz de Oliveira; Ana Clara Pova Mendes; Daniela Mara de Oliveira; Luis Alexandre Muehlmann; Paulo C. Morais; Ricardo Bentes Azevedo; João Paulo Figueiró Longo
Nanoparticle delivery to tumor tissue is one of the most important applications of nanomedicine. However, the literature shows that this pharmacological event is highly-affected by several tumor biology characteristics, including tumor size and maturation. Thus, the objective of the present study is to report on the investigation of the biodistribution of a lipid nanoemulsion (NE) in a breast cancer tumor model using in vivo imaging techniques. As highlights of this study, we can indicate that the biodistribution was measured in different tumor sites (primary and metastatic tumors) and in the same experimental mice for four subsequent weeks. With this approach it is possible to observe that the NE tumor delivery is significantly altered during tumor growth and metastasis progression. Furthermore, in the present report we introduce a phenomenological mathematical model that successfully explains the delivery behavior of a hydrophobic infrared fluorescent NE marker to both primary tumor and metastatic lesions. We believe that these data, in addition to the phenomenological mathematical model, are relevant to understanding how the stage of tumor development can alter macromolecule and/or nanoparticle delivery to tumor tissues, thus improving the efficacy of the passive delivery features promoted by tumor biology.
Zeitschrift für anorganische und allgemeine Chemie | 2002
Victor M. Deflon; Daniela Mara de Oliveira; Gerimário F. de Sousa; Alzir A. Batista; Luis R. Dinelli; Eduardo E. Castellano
Zeitschrift für anorganische und allgemeine Chemie | 2002
Victor M. Deflon; Daniela Mara de Oliveira; Gerimário F. de Sousa; Alzir A. Batista; Luis R. Dinelli; Eduardo E. Castellano
Einstein (São Paulo) | 2009
Daniela Mara de Oliveira; Breno Oliveira Almeida; Luciana Cavalheiro Marti; Tatiana Tais Sibov; Lorena Favaro Pavon; Denise Maria Avancini Costa Malheiros; Alexandre Holthausen Campos