Daniela Moisi
Jewish General Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Moisi.
The Journal of Infectious Diseases | 2007
Bluma G. Brenner; Michel Roger; Jean-Pierre Routy; Daniela Moisi; Michel Ntemgwa; Claudine Matte; Jean-Guy Baril; Danielle Rouleau; Julie Bruneau; Roger LeBlanc; Mario Legault; Cécile Tremblay; Hugues Charest; Mark A. Wainberg
BACKGROUND A population-based phylogenetic approach was used to characterize human immunodeficiency virus (HIV)-transmission dynamics in Quebec. METHODS HIV-1 pol sequences included primary HIV infections (PHIs; <6 months after seroconversion) from the Quebec PHI cohort (1998-2005; n=215) and the provincial genotyping program (2001-2005; n=481). Phylogenetic analysis determined sequence interrelationships among unique PHIs (n=593) and infections from untreated (n=135) and treated (n=660) chronically infected (CI) potential transmitter populations (2001-2005). Clinical features, risk factors, and drug resistance for clustered and nonclustered transmission events were ascertained. RESULTS Viruses from 49.4% (293/593) of PHIs cosegregated into 75 transmission chains with 2-17 transmissions/cluster. Half of the clusters included 2.7+/-0.8 (mean+/-SD) transmissions, whereas the remainder had 8.8+/-3.5 transmissions. Maximum periods for onward transmission in clusters were 15.2+/-9.5 months. Coclustering of untreated and treated CIs with PHIs were infrequent (6.2% and 4.8%, respectively). The ages, viremia, and risk factors were similar for clustered and nonclustered transmission events. Low prevalence of drug resistance in PHI supported amplified transmissions at early stages. CONCLUSIONS Early infection accounts for approximately half of onward transmissions in this urban North American study. Therapy at early stages of disease may prevent onward HIV transmission.
Journal of Virology | 2002
Bluma G. Brenner; Jean-Pierre Routy; Marco Petrella; Daniela Moisi; Maureen Oliveira; Mervi Detorio; Bonnie Spira; Vidal Essabag; Brian Conway; Richard Lalonde; Rafick-Pierre Sekaly; Mark A. Wainberg
ABSTRACT This study examines the persistence and fitness of multidrug-resistant (MDR) viruses acquired during primary human immunodeficiency virus infection (PHI). In four individuals, MDR infections persisted over the entire study period, ranging from 36 weeks to 5 years, in the absence of antiretroviral therapy. In stark contrast, identified source partners in two cases showed expected outgrowth of wild-type (WT) virus within 12 weeks of treatment interruption. In the first PHI case, triple-class MDR resulted in low plasma viremia (1.6 to 3 log copies/ml) over time compared with mean values obtained for an untreated PHI group harboring WT infections (4.1 to 4.3 log copies/ml). Increasing viremia in PHI patient 1 at week 52 was associated with the de novo emergence of a protease inhibitor-resistant variant through a recombination event involving the original MDR virus. MDR infections in two other untreated PHI patients yielded viremia levels typical of the untreated WT group. A fourth patients MDR infection yielded low viremia (<50 to 500 copies/ml) for 5 years despite his having phenotypic resistance to all antiretroviral drugs in his treatment regimen. In two of these PHI cases, a rebound to higher levels of plasma viremia only occurred when the M184V mutation in reverse transcriptase could no longer be detected and, in a third case, nondetection of M184V was associated with an inability to isolate virus. To further evaluate the fitness of MDR variants acquired in PHI, MDR and corresponding WT viruses were isolated from index and source partners, respectively. Although MDR viral infectivity (50% tissue culture infective dose) was comparable to that observed for WT viruses, MDR infections in each case demonstrated 2-fold and 13- to 23-fold reductions in p24 antigen and reverse transcriptase enzymatic activity, respectively. In dual-infection competition assays, MDR viruses consistently demonstrated a marked replicative disadvantage compared with WT virus. These results indicate that MDR viruses that are generated following PHI can establish persistent infections as dominant quasispecies despite their impaired replicative competence.
AIDS | 2006
Bluma G. Brenner; Maureen Oliveira; Florence Doualla-Bell; Daniela Moisi; Michel Ntemgwa; Fernando A Frankel; Max Essex; Mark A. Wainberg
Background:Genotypic diversity among HIV-1 subtypes and circulating recombinant forms (CRF) may lead to distinct pathways to drug resistance. This study evaluated subtype-related differences in the development of resistance in culture to tenofovir. Methods:Genotyping determined nucleotide diversity among subtypes. Representative subtype B, C, CRF1_AE, CRF2_AG, G, and HIV-2 isolates were selected for resistance to tenofovir, lamivudine and didanosine in cell culture. Phenotypic assays determined the effects of the K65R substitution in reverse transcriptase (RT) on drug susceptibility. Results:Subtype C isolates show unique polymorphisms in RT codons 64 (AAG→AAA), 65 (AAA→AAG), and 66 (AAA→AAG), absent in other subtypes. The K65R mutation (AAG→AGG) arose with tenofovir by week 12 in four subtype C selections. In contrast, no tenofovir resistance arose in four subtype B (> 34–74 weeks), one each of CRF2_AG and G (> 30–33 weeks), and three HIV-2 (> 27–28 weeks) selections. K65R appeared after 55 and 73 weeks in two CRF1_AE selections with tenofovir. In contrast, times to the appearance of M184V with lamivudine pressure (weeks 8–14) did not vary among subtypes. Selective didanosine pressure resulted in the appearance of M184V and L74V after 38 weeks in two of four subtype C selections. The K65R transitions in subtype C and other subtypes (AGG and AGA) conferred similar 6.5–10-fold resistance to tenofovir and five to 25-fold crossresistance to each of abacavir, lamivudine, and didanosine, while not affecting zidovudine susceptibility. Conclusion:Tenofovir -based regimens will need to be carefully monitored in subtype C infections for the possible selection of K65R.
Antimicrobial Agents and Chemotherapy | 2002
Hugues Loemba; Bluma G. Brenner; Michael A. Parniak; Shlomo Ma'ayan; Bonnie Spira; Daniela Moisi; Maureen Oliveira; Mervi Detorio; Mark A. Wainberg
ABSTRACT We sequenced and phylogenetically analyzed the reverse transcriptase (RT) region of five human immunodeficiency virus type 1 isolates from treatment-naive Ethiopian émigrés to Israel. Heteroduplex mobility assays were performed to confirm the clade C status of env genomic regions. The RT sequences showed that the strains clustered phylogenetically with clade C viruses, and a KVEQ-specific motif of silent mutations (amino acids 65, 106, 138, and 161, respectively) at resistance sites was present in the polymerase region of all studied Ethiopian isolates and subtype C reference strains. In addition, many other silent mutations were observed in the clade C viruses at various resistance sites. In general, the Ethiopian isolates were more closely related genotypically to a clade C reference strain from Botswana (southern Africa) than to previously sequenced Ethiopian reference strains. Genotypic analysis showed that two Ethiopian isolates naturally harbored the mutations K70R and G190A associated with resistance to ZDV and nonnucleoside reverse transcriptase inhibitors, respectively. Phenotypic assays revealed that the K70R substitution in this context did not reduce susceptibility to ZDV, whereas the G190A substitution resulted in high-level resistance to nevirapine (NVP). Moreover, variants resistant to NVP, delavirdine (DLV), and efavirenz (EFV) were more rapidly selected at lower drug doses culture with clade C than with clade B wild-type isolates. In the case of subtype C, selection with NVP and/or EFV led to the appearance of several previously unseen mutations in RT, i.e., V106M and S98I, as well as other mutations that have been previously reported (e.g., K103N, V106A, V108I, and Y181C). After selection with DLV, a polymorphism, A62A, initially observed in the Ethiopian isolate 4762, mutated to A62V; the latter is a secondary substitution associated with multidrug resistance against nucleoside RT inhibitors. Phenotypic analysis of clade C mutants selected against NVP, DLV, and EFV revealed broad cross-resistance, particularly in regard to NVP and DLV. These findings suggest that RT genotypic diversity may influence the emergence of drug resistance.
AIDS | 2008
Bluma G. Brenner; Michel Roger; Daniela Moisi; Maureen Oliveira; Isabelle Hardy; Reuven Turgel; Hugues Charest; Jean-Pierre Routy; Mark A. Wainberg
Objectives:Population-based sequencing of primary/recent HIV infections (PHIs) can provide a framework for understanding transmission dynamics of local epidemics. In Quebec, half of PHIs represent clustered transmission events. This study ascertained the cumulative implications of clustering on onward transmission of drug resistance. Methods:HIV-1 pol sequence datasets were available for all genotyped PHI (<6 months postseroconversion; n = 848 subtype B infections, 1997–2007). Phylogenetic analysis established clustered transmission events, based on maximum likelihood topologies having high bootstrap values (>98%) and short genetic distances. The distributions of resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors and protease inhibitors in unique and clustered transmissions were ascertained. Results:Episodic clustering was observed in half of recent/early stage infections from 1997–2008. Overall, 29 and 28% of new infections segregated into small (<5 PHI/cluster, n = 242/848) and large transmission chains (≥5 PHI/cluster, n = 239/848), averaging 2.8 ± 0.1 and 10.3 ± 1.0 PHI/cluster, respectively. The transmission of nucleoside analogue mutations and 215 resistant variants (T215C/D/I/F/N/S/Y) declined with clustering (7.9 vs. 3.4 vs. 1.2 and 5.8 vs. 1.7 vs. 1.1% for unique, small, and large clustered transmissions, respectively). In contrast, clustering was associated with the increased transmission of viruses harbouring resistance to nonnucleoside reverse transcriptase inhibitors (6.6 vs. 6.0 vs. 15.5%, respectively). Conclusion:Clustering in early/PHI stage infection differentially affects transmission of drug resistance to different drug classes. Public health, prevention and diagnostic strategies, targeting PHI, afford a unique opportunity to curb the spread of transmitted drug resistance.
The Journal of Infectious Diseases | 2011
Bluma G. Brenner; Michel Roger; David A. Stephens; Daniela Moisi; Isabelle Hardy; Jonathan Weinberg; Reuven Turgel; Hugues Charest; James S. Koopman; Mark A. Wainberg
Phylodynamic analysis and epidemiologic data identified 3 patterns of spread of primary human immunodeficiency virus type 1 infection (PHI) among men who have sex with men (2001-2009): 420 unique PHIs, 102 small clusters (2-4 PHIs per cluster, n = 280), and 46 large clusters (5-31 PHIs per cluster, n = 450). Large clusters disproportionately increased from 25.2% of PHIs in 2005 to 39.1% in 2009 (χ(2) = 33.9, P < .001). Scalar expansion of large clusters over 11 months (interquartile range, 3.5-25.5 months) correlated with cluster membership size (r(2) = 0.174, F = 4.424, P = .047). PHI cohort data revealed variations in social networks and risk behaviors among the 3 groups, suggesting the need for tailored prevention measures.
Journal of Virology | 2009
Dimitrios Coutsinos; Cédric F. Invernizzi; Hong-Tao Xu; Daniela Moisi; Maureen Oliveira; Bluma G. Brenner; Mark A. Wainberg
ABSTRACT We propose that a nucleotide template-based mechanism facilitates the acquisition of the K65R mutation in subtype C human immunodeficiency virus type 1 (HIV-1). Different patterns of DNA synthesis were observed using DNA templates from viruses of subtype B or C origin. When subtype C reverse transcriptase (RT) was employed to synthesize DNA from subtype C DNA templates, preferential pausing was seen at the nucleotide position responsible for the AAG-to-AGG K65R mutation. This did not occur when the subtype B RT and template were used. Template factors can therefore increase the probability of K65R development in subtype C HIV-1.
Journal of Acquired Immune Deficiency Syndromes | 2004
Dan Turner; Bluma G. Brenner; Jean-Pierre Routy; Daniela Moisi; Zeev Rosberger; Michel Roger; Mark A. Wainberg
This study compared the incidence of HIV-1 variants harboring mutations conferring resistance to thymidine analogues, ie, thymidine analogue mutations (TAMs), nonnucleoside reverse transcriptase (RT) inhibitors (NNMs), lamivudine (3TC) (ie, M184V), and protease inhibitors (PIs) acquired in primary HIV infection (PHI) (n = 59) to their observed prevalence in a corresponding potential transmitter (PT) population of persons harboring resistant infections (n = 380). Both of these populations in the context of this cohort analysis possessed similar demographics. Whereas the frequencies of observed TAMs, NNMs, M184V, and protease-associated mutations (PRAMs) were similar in the PT groups, the prevalence of M184V and major PI mutations were significantly lower in the PHI group (PHI/PT ratios of 0.14 and 0.39, respectively). There was a decreased prevalence in the PHI population of resistant viruses co-expressing NNMs or TAMs with M184V compared with viruses that harbored NNMs or TAMs in the absence of M184V (P < 0.0001). It was also observed that individuals in the PT subgroups who harbored RT mutations or PRAMs with M184V had lower levels of plasma viremia than individuals who lacked M184V (P < 0.05). These findings suggest that both decreased viremia and viral fitness in the case of M184V-containing HIV-1 variants may impact on viral transmissibility.
The Journal of Infectious Diseases | 2009
Cédric F Invernizzi; Dimitrios Coutsinos; Maureen Oliveira; Daniela Moisi; Bluma G. Brenner; Mark A. Wainberg
Recently, we described a novel nucleotide template-based mechanism that may be the basis for the facilitated acquisition of the K65R resistance mutation in subtype C versus subtype B human immunodeficiency virus type 1 (HIV-1). In this article, we evaluated the effects of subtype C-specific silent polymorphisms in cell culture drug-selection experiments using nucleoside and nucleotide reverse-transcriptase inhibitors. The K65R pathway was selected more frequently in a subtype B virus that contained subtype C nucleotide polymorphisms at both positions 64 and 65 than in a wild-type NL4-3 subtype B virus. This is the first demonstration of the significance of silent nucleotide polymorphisms in the development of drug resistance.
Antimicrobial Agents and Chemotherapy | 2007
Michel Ntemgwa; Bluma G. Brenner; Maureen Oliveira; Daniela Moisi; Mark A. Wainberg
ABSTRACT Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations—I54M, I82F, and L90M—arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.