Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Molè is active.

Publication


Featured researches published by Daniela Molè.


Endocrinology | 2013

miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cδ.

Erica Gentilin; Federico Tagliati; Carlo Filieri; Daniela Molè; Mariella Minoia; Maria Rosaria Ambrosio; Ettore C. degli Uberti; Maria Chiara Zatelli

The functional aftermath of microRNA (miRNA) dysregulation in ACTH-secreting pituitary adenomas has not been demonstrated. miRNAs represent diagnostic and prognostic biomarkers as well as putative therapeutic targets; their investigation may shed light on the mechanisms that underpin pituitary adenoma development and progression. Drugs interacting with such pathways may help in achieving disease control also in the settings of ACTH-secreting pituitary adenomas. We investigated the expression of 10 miRNAs among those that were found as most dysregulated in human pituitary adenoma tissues in the settings of a murine ACTH-secreting pituitary adenoma cell line, AtT20/D16v-F2. The selected miRNAs to be submitted to further investigation in AtT20/D16v-F2 cells represent an expression panel including 5 up-regulated and 5 down-regulated miRNAs. Among these, we selected the most dysregulated mouse miRNA and searched for miRNA targets and their biological function. We found that AtT20/D16v-F2 cells have a specific miRNA expression profile and that miR-26a is the most dysregulated miRNA. The latter is overexpressed in human pituitary adenomas and can control viable cell number in the in vitro model without involving caspase 3/7-mediated apoptosis. We demonstrated that protein kinase Cδ (PRKCD) is a direct target of miR-26a and that miR26a inhibition delays the cell cycle in G1 phase. This effect involves down-regulation of cyclin E and cyclin A expression via PRKCD modulation. miR-26a and related pathways, such as PRKCD, play an important role in cell cycle control of ACTH pituitary cells, opening new therapeutic possibilities for the treatment of persistent/recurrent Cushings disease.


The Journal of Clinical Endocrinology and Metabolism | 2009

Growth hormone excess promotes breast cancer chemoresistance.

Maria Chiara Zatelli; Mariella Minoia; Daniela Molè; Valentina Cason; Federico Tagliati; Angelo Margutti; Marta Bondanelli; Maria Rosaria Ambrosio; Ettore C. degli Uberti

CONTEXT GH and IGF-I are known to promote breast carcinogenesis. Even if breast cancer (BC) incidence is not increased in female acromegalic patients, mortality is greater as compared with general population. OBJECTIVE The objective of the study was to evaluate whether GH/IGF-I excess might influence BC response to chemotherapy. DESIGN We evaluated GH and IGF-I effects on cell proliferation of a BC cell line, MCF7 cells, in the presence of doxorubicin (Doxo), frequently used in BC chemotherapy, and the possible mechanisms involved. RESULTS GH and IGF-I induce MCF7 cell growth in serum-free conditions and protect the cells from the cytotoxic effects of Doxo. GH effects are direct and not mediated by IGF-I because they are apparent also in the presence of an IGF-I receptor blocking antibody and disappear in the presence of the GH antagonist pegvisomant. The expression of the MDR1 gene, involved in resistance to chemotherapeutic drugs, was not induced by GH. In addition, c-fos transduction was reduced by Doxo, which prevented GH stimulatory effects. Pegvisomant inhibited basal and GH-induced c-fos promoter transcriptional activity. Autocrine GH action is ruled out by the lack of endogenous GH expression in this MCF7 cell strain. CONCLUSIONS These data indicate that GH can directly induce resistance to chemotherapeutic drugs with a mechanism that might involve GH-induced early gene transcription and support the hypothesis that GH excess can hamper BC treatment, possibly resulting in an increased mortality.


Endocrinology | 2010

Magmas, a gene newly identified as overexpressed in human and mouse ACTH-secreting pituitary adenomas, protects pituitary cells from apoptotic stimuli.

Federico Tagliati; Erica Gentilin; Mattia Buratto; Daniela Molè; Ettore Ciro degli Uberti; Maria Chiara Zatelli

Pituitary tumors are mostly benign, being locally invasive in 5-35% of cases. Deregulation of several genes has been suggested as a possible alteration underlying the development and progression of pituitary tumors. We here report the identification of a cDNA, corresponding to Magmas gene (mitochondria-associated protein involved in granulocyte-macrophage colony-stimulating factor signal transduction), which is highly expressed in two different ACTH-secreting mouse pituitary adenoma cell lines as compared with normal pituitary as well as in two thirds of 64 examined pituitary adenomas as compared with human normal pituitary. Tim 16, the mitochondrial protein encoded by Magmas, was indeed expressed in a mouse ACTH-secreting pituitary adenoma cell line, AtT-20 D16v-F2 cells, in a subcellular compartment likely corresponding to mitochondria. Magmas silencing determined a reduced rate of DNA synthesis, an accumulation in G1 phase, and a concomitant decrease in S phase in At-T20 D16v-F2 cells. Moreover, Magmas-silenced cells displayed basal caspase 3/7 activity and DNA fragmentation levels similar to control cells, which both increased under proapoptotic stimuli. Our data demonstrate that Magmas is overexpressed in mouse and human ACTH-secreting pituitary adenomas. Moreover, our results show that Magmas protects pituitary cells from apoptosis, suggesting its possible involvement in neoplastic transformation.


Growth Hormone & Igf Research | 2012

Growth hormone receptor blockade inhibits growth hormone-induced chemoresistance by restoring cytotoxic-induced apoptosis in breast cancer cells independently of estrogen receptor expression.

Mariella Minoia; Erica Gentilin; Daniela Molè; Martina Rossi; Carlo Filieri; Federico Tagliati; Maria Rosaria Ambrosio; E.C. Degli Uberti; M. C. Zatelli

CONTEXT GH and IGF-I play a role in breast cancer (BC) development. We previously demonstrated that GH protects the estrogen receptor (ER) positive BC-derived MCF7 cell line toward the cytotoxic effects of doxorubicin (D), independently of IGF-I. This issue may be important in ER negative BC cells that are more aggressive and more likely to develop chemoresistance. AIM OF THE STUDY The aim of this study was to evaluate whether GH may impact chemoresistance phenotype of ER-negative BC-derived MDA-MB-231 cell line and investigate the possible mechanisms implicated in the protective action of GH toward the cytotoxic effects of D in both ER-positive and ER-negative BC-derived cell lines. RESULTS GH protects ER-negative MDA-MB-231 cells from the cytotoxic effects of D and GH receptor antagonist pegvisomant reduces GH-induced DNA synthesis also in these cells. In both MDA-MB-231 and MCF7 cells, GH does not revert D-induced G2/M accumulation but significantly reduces basal and D-induced apoptosis, an effect blocked by pegvisomant. Glutathione S-transferase activity is not implicated in the protective effects of GH, whereas D-induced apoptosis depends on c-Jun N terminal kinase (JNK) activation. GH reduces both basal and D-stimulated JNK transcriptional activity and phosphorylation. CONCLUSIONS In human BC cell lines, GH directly promotes resistance to apoptosis induced by chemotherapeutic drugs independently of ER expression by modulating JNK, further broadening the concept that GH excess may hamper cytotoxic BC treatment. These findings support the hypothesis that blocking GH receptor may be viewed as a potential new therapeutic approach to overcome chemoresistance, especially in ER-negative BC.


Analytical Cellular Pathology | 2009

Cyclo-oxygenase 2 modulates chemoresistance in breast cancer cells involving NF-κB

Maria Chiara Zatelli; Daniela Molè; Federico Tagliati; Mariella Minoia; Maria Rosaria Ambrosio; Ettore C. degli Uberti

Background: Breast cancer cells can develop chemoresistance after prolonged exposure to cytotoxic drugs due to expression of the multi drug resistance (MDR) 1 gene. Type 2 cyclo-oxygenase (COX-2) inhibitors reverse the chemoresistance phenotype of a medullary thyroid carcinoma cell line, TT, and of a breast cancer cell line, MCF7, by inhibiting MDR1 expression and P-gp function. Aim: investigate the role of prostaglandin (PG) in modulating chemoresistance in MCF7 cells and to explore the involved intracellular mechanisms. Methods: native and chemoresistant MCF7 cells were treated with PGH2 and resistance to Doxorubicin was tested in the presence or absence of COX-2 inhibitors. Results: PGH2 restores resistance to the cytotoxic effects of Doxo, with concomitant nuclear translocation of the transcription factor NF-κB. Conclusions: COX-2 inhibitors prevent chemoresistance development in breast cancer cells by inhibiting P-gp expression and function by a mechanism that involves PGH2 generation and NF-κB activation.


Endocrinology | 2012

Protein Kinase C: A Putative New Target for the Control of Human Medullary Thyroid Carcinoma Cell Proliferation in Vitro

Daniela Molè; Erica Gentilin; Teresa Gagliano; Federico Tagliati; Marta Bondanelli; Maria Rosa Pelizzo; Martina Rossi; Carlo Filieri; Giancarlo Pansini; Ettore C. degli Uberti; Maria Chiara Zatelli

We investigate the role of protein kinase C (PKC) in the control of medullary thyroid carcinoma (MTC) cell proliferation by a PKC inhibitor, Enzastaurin, in human MTC primary cultures and in the TT cell line. We found that PKC inhibition reduces cell proliferation by inducing caspase-mediated apoptosis and blocks the stimulatory effect of IGF-I on calcitonin secretion. Enzastaurin reduces PKCβII (Thr500) phosphorylation, indicating a direct involvement of this isoform as well as the phosphorylated levels of Akt (Ser 473) and glycogen synthase kinase (Ser9), PKC pathway downstream targets and pharmacodynamic markers for PKC inhibition. PKCβII and PKCδ enzyme isoforms expression and localization were investigated. These data indicate that in vitro PKC is involved in the control of human MTC proliferation and survival by modulating apoptosis, with a mechanism that implicates PKCβII inhibition and translocation in different subcellular compartments. Targeting PKC may represent a useful therapeutic approach for controlling MTC proliferation.


Endocrine-related Cancer | 2011

Targeting protein kinase C by Enzastaurin restrains proliferation and secretion in human pancreatic endocrine tumors

Daniela Molè; Teresa Gagliano; Erica Gentilin; Federico Tagliati; Claudio Pasquali; Maria Rosaria Ambrosio; Giancarlo Pansini; Ettore C. degli Uberti; Maria Chiara Zatelli

Dysregulation of the protein kinase C (PKC) signaling pathway has been implicated in tumor progression. In this study, we investigate the effects of a PKC inhibitor, Enzastaurin, in human pancreatic neuroendocrine neoplasms (PNN) primary cultures and in the human pancreatic endocrine cancer cell line, BON1. To this aim six human PNN dispersed in primary cultures and BON1 cells were treated without or with 1-10 μM Enzastaurin and/or 100 nM IGF1 in the presence or absence of serum. Cell viability and apoptosis were evaluated after 48-72 h; Chromogranin A (CgA) and/or insulin secretion was assessed after 6 h of incubation. PKC expression was investigated by immunofluorescence and western blot. We found that Enzastaurin significantly reduced human PNN primary culture cell viability, as well as CgA and insulin secretion. Moreover, in the BON1 cell line Enzastaurin inhibited cell proliferation at 5 and 10 μM by inducing caspase-mediated apoptosis, and reduced phosphorylation of glycogen synthetase kinase 3β (GSK3β) and of Akt, both downstream targets of PKC pathway and pharmacodynamic markers for Enzastaurin. In addition, Enzastaurin blocked the stimulatory effect of IGF1 on cell proliferation, and reduced CgA expression and secretion in BON1 cells. Two different PKC isoforms are expressed at different levels and have partially different subcellular localization in BON1 cells. In conclusion, Enzastaurin reduces cell proliferation by inducing apoptosis, with a mechanism likely involving GSK3β signaling, and inhibits secretory activity in PNN in vitro models, suggesting that Enzastaurin might represent a possible medical treatment of human PNN.


Endocrine | 2015

The expression of the truncated isoform of somatostatin receptor subtype 5 associates with aggressiveness in medullary thyroid carcinoma cells

Daniela Molè; Erica Gentilin; Alejandro Ibanez-Costa; Teresa Gagliano; Manuel D. Gahete; Federico Tagliati; Roberta Rossi; Maria Rosa Pelizzo; Giancarlo Pansini; Raúl M. Luque; Justo P. Castaño; Ettore C. degli Uberti; Maria Chiara Zatelli

The truncated somatostatin receptor variant sst5TMD4 associates with increased invasiveness and aggressiveness in breast cancer. We previously found that sst5 activation may counteract sst2 selective agonist effects in a medullary thyroid carcinoma (MTC) cell line, the TT cells, and that sst5TMD4 is overexpressed in poorly differentiated thyroid cancers. The purpose of this study is to evaluate sst5TMD4 expression in a series of human MTC and to explore the functional role of sst5TMD4 in TT cells. We evaluated sst5TMD4 and sst5 expression in 36 MTC samples. Moreover, we investigated the role of sst5TMD4 in TT cells evaluating cell number, DNA synthesis, free cytosolic calcium concentration ([Ca2+]i), calcitonin and vascular endothelial growth factor levels, cell morphology, protein expression, and invasion. We found that in MTC the balance between sst5TMD4 and sst5 expression influences disease stage. sst5TMD4 overexpression in TT cells confers a greater growth capacity, blocks sst2 agonist-induced antiproliferative effects, modifies the cell phenotype, decreases E-cadherin and phosphorylated β-catenin levels, increases vimentin, total β-catenin and phosphorylated GSK3B levels (in keeping with the development of epithelial to mesenchymal transition), and confers a greater invasion capacity. This is the first evidence indicating that sst5TMD4 is expressed in human MTC cells, where it associates with more aggressive behavior, suggesting that sst5TMD4 might play a functionally relevant role.


Reproductive Toxicology | 2014

Inhibitory effects of mitotane on viability and secretory activity in mouse gonadotroph cell lines

Erica Gentilin; Daniela Molè; Teresa Gagliano; Mariella Minoia; Maria Rosaria Ambrosio; Ettore C. degli Uberti; Maria Chiara Zatelli

Mitotane represents the mainstay medical treatment for metastatic, inoperable or recurrent adrenocortical carcinoma. Besides the well-known adverse events, mitotane therapy is associated also with endocrinological effects, including sexual and reproductive dysfunction. The majority of male patients undergoing adjuvant mitotane therapy show a picture of hypogonadism, characterized by low free testosterone and high sex hormone binding globulin levels and unmodified LH concentrations. Since mitotane has been shown to have direct pituitary effects, we investigated whether mitotane may influence both cell viability and function of gonadotroph cells in the settings of two pituitary cell lines. We found that mitotane reduces cell viability, induces apoptosis, modifies cell cycle phase distribution and secretion of gonadotroph cells. The present data strengthen previous evidence showing a direct mitotane effect at pituitary level and represent a possible explanation of the lack of LH increase following decrease in free testosterone in patients undergoing adjuvant mitotane therapy.


PLOS ONE | 2013

Magmas Overexpression Inhibits Staurosporine Induced Apoptosis in Rat Pituitary Adenoma Cell Lines

Federico Tagliati; Teresa Gagliano; Erica Gentilin; Mariella Minoia; Daniela Molè; Ettore C. delgi Uberti; Maria Chiara Zatelli

Magmas is a nuclear gene that encodes for the mitochondrial import inner membrane translocase subunit Tim16. Magmas is overexpressed in the majority of human pituitary adenomas and in a mouse ACTH-secreting pituitary adenoma cell line. Here we report that Magmas is highly expressed in two out of four rat pituitary adenoma cell lines and its expression levels inversely correlate to the extent of cellular response to staurosporine in terms of apoptosis activation and cell viability. Magmas over-expression in rat GH/PRL-secreting pituitary adenoma GH4C1 cells leads to an increase in cell viability and to a reduction in staurosporine-induced apoptosis and DNA fragmentation, in parallel with the increase in Magmas protein expression. These results indicate that Magmas plays a pivotal role in response to pro-apoptotic stimuli and confirm and extend the finding that Magmas protects pituitary cells from staurosporine-induced apoptosis, suggesting its possible involvement in pituitary adenoma development.

Collaboration


Dive into the Daniela Molè's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge