Daniela Ostrowski
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Ostrowski.
Neuroscience | 2014
Natasa Miljus; Saskia Heibeck; Miriam Jarrar; Michaele Micke; Daniela Ostrowski; Hannelore Ehrenreich; Ralf Heinrich
The cytokine erythropoietin (Epo) initiates adaptive cellular responses to both moderate environmental challenges and tissue damaging insults in various non-hematopoietic mammalian tissues including the nervous system. Neuroprotective and neuroregenerative functions of Epo in mammals are mediated through receptor-associated Janus kinase 2 and intracellular signaling cascades that modify the transcription of Epo-regulated genes. Signal transducers and activators of transcription (STAT) and phosphoinositol-3-kinase (PI3K) represent key components of two important Epo-induced transduction pathways. Our previous study on insects revealed neuroprotective and regenerative functions of recombinant human Epo (rhEpo) similar to those in mammalian nervous tissues. Here we demonstrate that rhEpo effectively rescues primary cultured locust brain neurons from apoptotic cell death induced by hypoxia or the chemical compound H-7. The Janus kinase inhibitor AG-490 and the STAT inhibitor sc-355797 abolished protective effects of rhEpo on locust brain neurons. In contrast, inhibition of PI3K with LY294002 had no effect on rhEpo-mediated neuroprotection. The results indicate that rhEpo mediates the protection of locust brain neurons through interference with apoptotic pathways by the activation of a Janus kinase-associated receptor and STAT transcription factor(s). The involvement of similar transduction pathways in mammals and insects for the mediation of neuroprotection and support of neural regeneration by Epo indicates that an Epo/Epo receptor-like signaling system with high structural and functional similarity exists in both groups of animals. Epo-like signaling involved in tissue protection appears to be an ancient beneficial function shared by vertebrates and invertebrates.
Journal of Neurophysiology | 2014
Tim D. Ostrowski; Daniela Ostrowski; Eileen M. Hasser; David D. Kline
Serotonin (5-HT), and its 5-HT1A receptor (5-HT1AR) subtype, is a powerful modulator of the cardiorespiratory system and its sensory reflexes. The nucleus tractus solitarii (nTS) serves as the first central station for visceral afferent integration and is critical for cardiorespiratory reflex responses. However, the physiological and synaptic role of 5-HT1ARs in the nTS is relatively unknown. In the present study, we examined the distribution and modulation of 5-HT1ARs on cardiorespiratory and synaptic parameters in the nTS. 5-HT1ARs were widely distributed to cell bodies within the nTS but not synaptic terminals. In anesthetized rats, activation of 5-HT1ARs by microinjection of the 5-HT1AR agonist 8-OH-DPAT into the caudal nTS decreased minute phrenic neural activity via a reduction in phrenic amplitude. In brain stem slices, 8-OH-DPAT decreased the amplitude of glutamatergic tractus solitarii-evoked excitatory postsynaptic currents, and reduced overall spontaneous excitatory nTS network activity. These effects persisted in the presence of GABAA receptor blockade and were antagonized by coapplication of 5-HT1AR blocker WAY-100135. 5-HT1AR blockade alone had no effect on tractus solitarii-evoked excitatory postsynaptic currents, but increased excitatory network activity. On the other hand, GABAergic nTS-evoked inhibitory postsynaptic currents did not change by activation of the 5-HT1ARs, but spontaneous inhibitory nTS network activity decreased. Blocking 5-HT1ARs tended to increase nTS-evoked inhibitory postsynaptic currents and inhibitory network activity. Taken together, 5-HT1ARs in the caudal nTS decrease breathing, likely via attenuation of afferent transmission, as well as overall nTS network activity.
PLOS ONE | 2011
Holly LaFerriere; Daniela Ostrowski; Douglas J. Guarnieri; Troy Zars
The genetic mechanisms that influence memory formation and sensitivity to the effects of ethanol on behavior in Drosophila have some common elements. So far, these have centered on the cAMP/PKA signaling pathway, synapsin and fas2-dependent processes, pumilio-dependent regulators of translation, and a few other genes. However, there are several genes that are important for one or the other behaviors, suggesting that there is an incomplete overlap in the mechanisms that support memory and ethanol sensitive behaviors. The basis for this overlap is far from understood. We therefore examined memory in arouser (aru) mutant flies, which have recently been identified as having ethanol sensitivity deficits. The aru mutant flies showed memory deficits in both short-term place memory and olfactory memory tests. Flies with a revertant aru allele had wild-type levels of memory performance, arguing that the aru gene, encoding an EPS8L3 product, has a role in Drosophila memory formation. Furthermore, and interestingly, flies with the aru8–128 insertion allele had deficits in only one of two genetic backgrounds in place and olfactory memory tests. Flies with an aru imprecise excision allele had deficits in tests of olfactory memory. Quantitative measurements of aru EPS8L3 mRNA expression levels correlate decreased expression with deficits in olfactory memory while over expression is correlated with place memory deficits. Thus, mutations of the aru EPS8L3 gene interact with the alleles of a particular genetic background to regulate arouser expression and reveals a role of this gene in memory.
Neurobiology of Learning and Memory | 2015
Daniela Ostrowski; Lily Kahsai; Elizabeth F. Kramer; Patrick Knutson; Troy Zars
Some memories last longer than others, with some lasting a lifetime. Using several approaches memory phases have been identified. How are these different phases encoded, and do these different phases have similar temporal properties across learning situations? Place memory in Drosophila using the heat-box provides an excellent opportunity to examine the commonalities of genetically-defined memory phases across learning contexts. Here we determine optimal conditions to test place memories that last up to three hours. An aversive temperature of 41°C was identified as critical for establishing a long-lasting place memory. Interestingly, adding an intermittent-training protocol only slightly increased place memory when intermediate aversive temperatures were used, and slightly extended the stability of a memory. Genetic analysis of this memory identified four genes as critical for place memory within minutes of training. The role of the rutabaga type I adenylyl cyclase was confirmed, and the latheo Orc3 origin of recognition complex component, the novel gene encoded by pastrel, and the small GTPase rac were all identified as essential for normal place memory. Examination of the dopamine and ecdysone receptor (DopEcR) did not reveal a function for this gene in place memory. When compared to the role of these genes in other memory types, these results suggest that there are genes that have both common and specific roles in memory formation across learning contexts. Importantly, contrasting the timing for the function of these four genes, plus a previously described role of the radish gene, in place memory with the temporal requirement of these genes in classical olfactory conditioning reveals variability in the timing of genetically-defined memory phases depending on the type of learning.
Frontiers in Systems Neuroscience | 2017
Divya Sitaraman; Elizabeth F. Kramer; Lily Kahsai; Daniela Ostrowski; Troy Zars
Feedback mechanisms in operant learning are critical for animals to increase reward or reduce punishment. However, not all conditions have a behavior that can readily resolve an event. Animals must then try out different behaviors to better their situation through outcome learning. This form of learning allows for novel solutions and with positive experience can lead to unexpected behavioral routines. Learned helplessness, as a type of outcome learning, manifests in part as increases in escape latency in the face of repeated unpredicted shocks. Little is known about the mechanisms of outcome learning. When fruit fly Drosophila melanogaster are exposed to unpredicted high temperatures in a place learning paradigm, flies both increase escape latencies and have a higher memory when given control of a place/temperature contingency. Here we describe discrete serotonin neuronal circuits that mediate aversive reinforcement, escape latencies, and memory levels after place learning in the presence and absence of unexpected aversive events. The results show that two features of learned helplessness depend on the same modulatory system as aversive reinforcement. Moreover, changes in aversive reinforcement and escape latency depend on local neural circuit modulation, while memory enhancement requires larger modulation of multiple behavioral control circuits.
PLOS ONE | 2018
Daniela Ostrowski; Autoosa Salari; Troy Zars
Unsignaled stress can have profound effects on animal behavior. While most investigation of stress-effects on behavior follows chronic exposures, less is understood about acute exposures and potential after-effects. We examined walking activity in Drosophila following acute exposure to high temperature or electric shock. Compared to initial walking activity, flies first increase walking with exposure to high temperatures then have a strong reduction in activity. These effects are related to the intensity of the high temperature and number of exposures. The reduction in walking activity following high temperature and electric shock exposures survives context changes and lasts at least five hours. Reduction in the function of the biogenic amines octopamine / tyramine and serotonin both strongly blunt the increase in locomotor activity with high temperature exposure. However, neither set of biogenic amines alter the long lasting depression in walking activity after exposure.
Journal of Clinical Medicine | 2018
Daniela Ostrowski; Ralf Heinrich
In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory responses and supports re-establishment of compromised functions by stimulating proliferation, migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and regenerative functions of Epo have been described in the nervous systems of both vertebrates and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However, identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives indicated the existence of other types of Epo receptors. In this review, we summarize evidence for potential Epo receptors that might mediate Epo’s tissue-protective function in non-hematopoietic tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta receptor (βcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like factor 3 (CRLF3).
Access Science | 2011
Daniela Ostrowski; Troy Zars
Most people have had the experience of almost but not quite remembering the name of a person that th…
The FASEB Journal | 2015
Tim D. Ostrowski; David D. Kline; Eileen M. Hasser; Daniela Ostrowski
Archive | 2015
Kristin N. Takacs; Eckhard Ficker; Daniel B. Zoccal; Leni G.H. Bonagamba; Daniela Accorsi; Tim D. Ostrowski; Daniela Ostrowski; Eileen M. Hasser; David D. Kline; Miriam Kron; Min Lang; Ian T. Adams; Michael P. Sceniak; Frank M. Longo; David M. Katz