Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Ott is active.

Publication


Featured researches published by Daniela Ott.


Brain Research | 2010

Neurons and glial cells of the rat organum vasculosum laminae terminalis directly respond to lipopolysaccharide and pyrogenic cytokines

Daniela Ott; Jolanta Murgott; Sandra Rafalzik; Florian Wuchert; Babette Schmalenbeck; Joachim Roth; Rüdiger Gerstberger

During systemic immune challenge, the organum vasculosum laminae terminalis (OVLT) with its dense vascularization by fenestrated capillaries lacking blood-brain barrier function allows direct access of circulating pyrogens to brain tissue located in close vicinity to the preoptic area. We aimed to analyze direct responses of OVLT cells to exposure to lipopolysaccharide (LPS) and fibroblast-stimulating lipopeptide-1 (FSL-1) or the cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. A primary microculture of the OVLT was established from topographically excised rat pup brain tissue, with cellular identification by marker protein-specific immunocytochemistry. Employing the ratio calcium imaging technique, pyrogen-induced calcium signaling in single OVLT cells could be characterized. LPS--as opposed to FSL-1--stimulation caused fast, transient rises in intracellular calcium concentration in 17% of neurons, 9% of astrocytes, and <5% of microglial cells investigated. LPS additionally led to enhanced expression of TNF-α and IL-1β exclusively in microglial cells, as well as a time-dependent release of TNF-α and IL-6 from OVLT microcultures. TNF-α evoked calcium signals in 11% of neurons, 22% of astrocytes, and 5% of microglial cells tested. A considerable population of neurons (11%) but only few astrocytes and microglial cells responded to IL-6, whereas 8% of microglial cells and 3% of astrocytes or neurons were activated by IL-1β. The demonstration of direct cellular responses of OVLT-intrinsic cells to stimulations with LPS or cytokines reinforces the suggested role of this brain structure as a responsive brain site to circulating pyrogens.


Journal of Neuroimmunology | 2009

Tumor necrosis factor-α, interleukin-1β and nitric oxide induce calcium transients in distinct populations of cells cultured from the rat area postrema

Florian Wuchert; Daniela Ott; Sandra Rafalzik; Joachim Roth; R. Gerstberger

The area postrema (AP) represents the medullary sensory circumventricular organ lacking endothelial blood-brain barrier function at the base of the 4th cerebral ventricle. Administration of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) or the nitric oxide (NO) donor diethylamino-diazenolate-2-oxide (DEA) caused fast transient rises in intracellular calcium concentrations ([Ca(2+)]i) in distinct populations of cells investigated in a primary microculture of the rat AP. TNF-alpha caused rapid elevations of [Ca(2+)]i in 8% of all neurons and astrocytes investigated, with limited responses of microglial cells and no responses of oligodendrocytes. 15% of all neurons investigated responded to IL-1beta, while only 5-7% of the other cell types showed rises in [Ca(2+)]i. The most pronounced effects were caused by treatment with DEA with some 20% responsive astrocytes and oligodendrocytes, 15% neurons and 10% microglial cells. Evidently, the AP can act as a sensor for circulating TNF-alpha and IL-1beta, or for locally produced cytokines and NO during infection and inflammation.


Neuroscience Letters | 2012

The viral mimetic polyinosinic:polycytidylic acid (poly I:C) induces cellular responses in primary cultures from rat brain sites with an incomplete blood–brain barrier

Daniela Ott; Florian Wuchert; Jolanta Murgott; Christoph Rummel; Rüdiger Gerstberger; Joachim Roth

Primary microcultures of the organum vasculosum laminae terminalis (OVLT) and the area postrema (AP), brain sites with an incomplete blood-brain barrier, were established from topographically excised rat pup tissue, with cellular identification by marker protein-specific immunocytochemistry. Employing the ratio calcium imaging technique, we showed for the first time that polyinosinic:polycytidylic acid (poly I:C) can induce calcium signalling in single OVLT and AP cells. Poly I:C stimulation caused fast, transient rises in intracellular calcium in about 5% of neurons and astrocytes and some microglial cells. Frequently, the responses of astrocytes and microglial cells showed a shorter onset-latency compared to neurons. In addition, exposure to poly I:C led to a time dependent release of bioactive tumour necrosis factor (TNF) and interleukin-6 (IL-6) into the supernatants of OVLT and AP cultures. The demonstration of direct cellular responses of OVLT- and AP-intrinsic cells to stimulations with poly I:C is in agreement with the discovered existence of Toll-like receptor 3 (TLR3), the cognate receptor for poly I:C, in the brain.


Journal of Applied Physiology | 2014

Involvement of brain cytokines in zymosan-induced febrile response

Amanda Leite Bastos-Pereira; Daniel Fraga; Daniela Ott; Björn Simm; Jolanta Murgott; Joachim Roth; Aleksander Roberto Zampronio

This study compared the involvement of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) within the central nervous system (CNS) in the febrile response induced by zymosan (zym) and lipopolysaccharide (LPS). In addition, we investigated whether zym could activate important regions related to fever; namely, the vascular organ of the laminae terminalis (OVLT) and the median preoptic nucleus (MnPO). Intraperitoneal injection of zym (1, 3, and 10 mg/kg) induced a dose-related increase in core temperature. Zym (3 mg/kg) also reduced tail skin temperature, suggesting the activation of heat conservation mechanisms, as expected, during fever. LPS increased plasma levels of TNF-α measured at 1 h, IL-1β measured at 2 h, and IL-6 measured at 3 h after injection. Zym increased circulating levels of IL-6 but not those of TNF-α or IL-1β at the same time points. In addition, an intracerebroventricular injection of antibodies against TNF-α (2.5 μg) and IL-6 (10 μg) or the IL-1 receptor antagonist (160 ng) reduced the febrile response induced by zym and LPS. Zym (100 μg/ml) also increased intracellular calcium concentration in the OVLT and MnPO from rat primary neuroglial cultures and increased release of TNF-α and IL-6 into the supernatants of these cultures. Together, these results suggest that TNF-α, IL-1β, and IL-6 within the CNS participate in the febrile response induced by zym. However, the time course of release of these cytokines may be different from that of LPS. In addition, zym can directly activate the brain areas related to fever.


Neuroscience | 2016

Effects of prostaglandin E2 on cells cultured from the rat organum vasculosum laminae terminalis and median preoptic nucleus.

Björn Simm; Daniela Ott; Eric Pollatzek; Jolanta Murgott; Rüdiger Gerstberger; Christoph Rummel; Joachim Roth

The time course of the induction of enzymes responsible for the formation of prostaglandin E2 (PGE2) after an inflammatory insult, in relation to the concomitant febrile response, suggests that peripherally generated PGE2 is involved in the induction of the early phase of fever, while centrally produced PGE2 exerts pyrogenic capacities during the later stages of fever within the hypothalamic median preoptic nucleus (MnPO). The actions of peripherally derived PGE2 on the brain might occur at the level of the organum vasculosum laminae terminalis (OVLT), which lacks a tight blood-brain barrier and is implicated in fever, while the effects of PGE2 within the MnPO might interfere with glutamatergic neurotransmission within a recently characterized central efferent pathway for the activation of cold-defence reactions. Using the fura-2 ratio imaging technique we, therefore, measured changes of the intracellular Ca(2+)-concentration in primary neuroglial microcultures of rat OVLT and MnPO stimulated with PGE2 and/or glutamate. In cultures from the OVLT, as opposed to those derived from the MnPO, substantial numbers of neurons (8% of 385), astrocytes (19% of 645) and microglial cells (28% of 43) directly responded to PGE2 with a transient increase of intracellular Ca(2+). The most pronounced effect of PGE2 on cells from MnPO microcultures was its modulatory influence on the strength of glutamate-induced Ca(2+)-signals. In 72 out of 512 neurons and in 105 out of 715 astrocytes PGE2 significantly augmented glutamate-induced Ca(2+)-signals. About 30% of these neurons were GABAergic. These observations are in agreement with putative roles of peripheral PGE2 as a directly acting circulating agent at the level of the OVLT, and of central MnPO-intrinsic PGE2 as an enhancer of glutamatergic neurotransmission, which causes disinhibition of thermogenic heat production, a crucial component for the manifestation of fever. In microcultures from both brain sites investigated incubation with PGE2 significantly reduced the lipopolysaccharide-induced release of cytokines (tumor necrosis factor-α and interleukin-6) into the supernatant. PGE2, thus, seems to be involved in a negative feed-back loop to limit the strength of the brain inflammatory process and to play a dual role with pro- as well as anti-inflammatory properties.


Brain Behavior and Immunity | 2013

Chemokine ligand (CCL)-3 promotes an integrated febrile response when injected within pre-optic area (POA) of rats and induces calcium signaling in cells of POA microcultures but not TNF-α or IL-6 synthesis.

Denis M. Soares; Daniela Ott; Miriam C. C. Melo; Glória E.P. Souza; Joachim Roth

Although studies have shown that chemokines are pyrogenic when injected into the brain, there are no data indicating which cell types and receptors in the CNS are employed by chemokines such as CCL3 (synonym: MIP-1α) to induce fever in rats. We aimed to study, whether CCL3 induces fever when injected directly into the thermoregulatory center within the pre-optic area (POA). Moreover, we investigated whether CCL3 activates cells from POA microcultures resulting in intracellular Ca++ mobilization and synthesis/release of TNF-α and IL-6. Microinjections of CCL3 into the POA induced a dose-dependent fever, which was accompanied by a decrease in tail skin temperature. The primary microcultures of the POA (from topographically excised rat pup brain tissue) were stimulated by bolus administrations of 100 μl CCL3 (0.1 or 0.01 μg) or sterile PBS as control. We evaluated the responses of 261 (30.89%) neurons, 346 (40.94%) astrocytes and 238 microglia cells (29.17%). Stimulation of rat POA microcultures with CCL3 was capable of inducing Ca++ signaling in 15.31% of all astrocytes and 5.75% of all neurons investigated. No cellular Ca++-signals were observed after overnight incubation of the cultures with antiCCR1 or antiCCR5 antibodies. CCL3 did not alter the release of the pyrogenic cytokines IL-6 or TNF-α into the supernatant of the cultures. In conclusion the present study shows for the first time that CCL-3 injected directly into the rat POA, evoked an integrated febrile response. In parallel this chemokine induces Ca++ signaling in astrocytes and neurons via both CCR1 and CCR5 receptors when administered to POA microcultures without stimulating the synthesis of TNF-α and IL-6. It is a possibility that CCL3-induced fever may occur via CCR1 and CCR5 receptors stimulation of astrocytes and neurons from POA.


Neuroscience Letters | 2015

Prostaglandin D2 modulates calcium signals induced by prostaglandin E2 in neurons of rat dorsal root ganglia.

Daniela Ott; Björn Simm; Eric Pollatzek; Rüdiger Gerstberger; Christoph Rummel; Joachim Roth

Fever in response to a localized subcutaneous stimulation with a low dose of lipopolysaccharide (LPS) can be attenuated by co-administration of a local anesthetic or the non-selective cyclooxygenase (COX) inhibitor diclofenac at doses, which do not exert systemic effects when injected at sites remote from the area of inflammatory stimulation. These results suggest a participation of neuronal afferent signals mediated by COX-products in the manifestation of fever under these conditions. We therefore, measured intracellular Ca(2+)-concentrations in cultured neurons from rat dorsal root ganglia (DRG) stimulated with the pyrogenic mediator prostaglandin E2 (PGE2), the anti-inflammatory and antipyretic mediator PGD2, mixtures of both PGs, and menthol using the fura-2 ratio imaging technique. Neurons could be grouped according to their size with diameters of about 15μm (small), 35μm (medium sized), or 55μm (large). 96 out of 264 neurons responded to PGE2 with pronounced Ca(2+)-signals, 53 of them being also responsive to menthol, indicative of their function as cold-sensors. 80% of these neurons belonged to the medium sized group. In a next experiment, we tested whether Ca(2+)-signals of PGE2 responsive neurons were modulated by PGD2. In 60% of all neurons investigated (n=57), the strength of the PGE2-induced Ca(2+)-signals was reduced by co-administration of PGD2. This effect was also observed in those neurons that were responsive to PGE2 and menthol (n=23; p<0.001). This observation indicates antagonistic effects of PGE2 and PGD2 on a neuronal pathway that involves cold sensors and is activated during a localized subcutaneous inflammation. This finding might provide an explanation for the reported antipyretic and anti-inflammatory capacities of PGD2.


Brain Research | 2008

Cholinergic signal transduction in the mouse sphenopalatine ganglion

Sandra Rafalzik; Ulrich Pehl; Daniela Ott; Jörg Strotmann; Miriam Wolff; Rüdiger Gerstberger

The sphenopalatine ganglia (SPG) receive their preganglionic innervation from the ventro-lateral reticular formation and nuclei of the caudal pons, and are involved in parasympathetic control of cranial glandular and vascular components including the blood supply to specific brain areas. In 53% of all SPG neurons, a particular member (MOL2.3) of the odorant receptor superfamily is co-expressed with green fluorescent protein (GFP) in MOL2.3 transgenic mouse pups. Choline acetyltransferase and vesicular acetylcholine transporter (VAChT) could be demonstrated in 90% of the GFP-positive, and 60% of the GFP-negative cells, these cells thus representing cholinergic neurons. Some 50% of all SPG neurons were nitrergic at a high rate of VAChT co-expression, the majority of them being GFP-positive. Most SPG neurons received cholinergic innervation as demonstrated by perineuronal VAChT immunoreactive nerve terminals. To characterize cholinergic signal transduction in SPG neurons, calcium imaging experiments were performed in a SPG primary culture system containing GFP-positive and -negative neurons. Ganglionic neurons could repeatedly be activated by cholinergic stimulation in a dose-dependent manner, with calcium entering all cells from the extracellular compartment. Stimulation with specific agonists supported prevalence of nicotinic cholinergic receptors (nAChRs). Inhibition of cholinergically induced intracellular calcium signalling by various omega-conotoxins indicated functional expression of alpha 3 beta 4 and alpha 7 nAChR subtypes in murine SPG cells, which could be supported by RT-PCR analysis of the neonatal mouse SPG. With regard to secondary cholinergic activation, L- but not N-subtype voltage-gated calcium channels might represent a prime target. Nicotinic signal transduction did not prove to be different in GFP-positive as compared to-negative murine SPG neurons.


Neuropharmacology | 2017

The relevance of kalikrein-kinin system via activation of B-2 receptor in LPS-induced fever in rats

Denis Melo Soares; Danielle R. Santos; Christoph Rummel; Daniela Ott; Miriam C. C. Melo; Joachim Roth; João B. Calixto; Glória E.P. Souza

Purpose: This study evaluated the involvement of endogenous kallikrein‐kinin system and the bradykinin (BK) B1 and B2 receptors on LPS‐ induced fever and the POA cells involved in this response. Material and methods: Male Wistar rats received either i.v. (1 mg/kg), i.c.v. (20 nmol) or i.h. (2 nmol) injections of icatibant (B2 receptor antagonist) 30 or 60 min, respectively, before the stimuli. DALBK (B1 receptor antagonist) was given either 15min before BK (i.c.v.) or 30 min before LPS (i.v.). Captopril (5 mg/kg, sc.,) was given 1 h prior LPS or BK. Concentrations of BK and total kininogenon CSF, plasma and tissue kallikrein were evaluated. Rectal temperatures (rT) were assessed by telethermometry. Ca++ signaling in POA cells was performed in rat pup brain tissue microcultures. Results: Icatibant reduced LPS fever while, captopril exacerbated that response, an effect abolished by icatibant. Icatibant (i.h.) reduced fever to BK (i.h.) but not that induced by LPS (i.v.). BK increased intracellular calcium concentration in neurons and astrocytes. LPS increased levels of bradykinin, tissue kallikrein and total kininogen. BK (i.c.v.) increased rT and decreased tail skin temperature. Captopril potentiated BK‐induced fever an effect abolished by icatibant. DALBK reduced the fever induced by BK. BK (i.c.v.) increased the CSF PGE2concentration. Effect abolished by indomethacin (i.p.). Conclusions: LPS activates endogenous kalikrein‐kinin system leading to production of BK, which by acting on B2‐receptors of POA cells causes prostaglandin synthesis that in turn produces fever. Thus, a kinin B2‐receptor antagonist that enters into the brain could constitute a new and interesting strategy to treat fever. HighlightsRole of kininergic system in LPS‐induced fever in rats.LPS‐induced kalikrein‐kinin system activation results in B2‐receptors in POA cells.Both POA cells activation and rats fever occurs after BK B2‐receptors stimulation.


Neuroscience | 2018

Primary Cultures from Rat Dorsal Root Ganglia: Responses of Neurons and Glial Cells to Somatosensory or Inflammatory Stimulation

Stephan Leisengang; Daniela Ott; Jolanta Murgott; Rüdiger Gerstberger; Christoph Rummel; Joachim Roth

Primary cultures of rat dorsal root ganglia (DRG) consist of neurons, satellite glial cells and a moderate number of macrophages. Measurements of increased intracellular calcium [Ca2+]i induced by stimuli, have revealed that about 70% of DRG neurons are capsaicin-responsive nociceptors, while 10% responded to cooling and or menthol (putative cold sensors). Cultivation of DRG in the presence of a moderate dose of lipopolysaccharide (LPS, 1 µg/ml) enhanced capsaicin-induced Ca2+ signals. We therefore investigated further properties of DRG primary cultures stimulated with 10 µg/ml LPS for a short period. Exposure to LPS for 2 h resulted in pronounced release of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) into the supernatants of DRG cultures, increased expression of both cytokines in the DRG cells and increased TNF immunoreactivity predominantly in macrophages. We further observed an accumulation of the inflammatory transcription factors NF-IL6 and STAT3 in the nuclei of LPS-exposed DRG neurons and macrophages. In the presence of the cytotoxic agent cisplatin (5 or 10 µg/ml), the number of macrophages was decreased significantly, the growth of satellite glial cells was markedly suppressed, but the vitality and stimulus-induced Ca2+ signals of DRG neurons were not impaired. Under these conditions the LPS-induced production and expression of TNF-α and IL-6 were blunted. Our data suggest a potential role for macrophages and satellite glial cells in the initiation of inflammatory processes that develop in sensory ganglia upon injury or exposure to pathogens.

Collaboration


Dive into the Daniela Ott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge