Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Pende is active.

Publication


Featured researches published by Daniela Pende.


Journal of Experimental Medicine | 2003

Identification of PVR (CD155) and Nectin-2 (CD112) as Cell Surface Ligands for the Human DNAM-1 (CD226) Activating Molecule

Cristina Bottino; Roberta Castriconi; Daniela Pende; Paola Rivera; Marina Nanni; Barbara Carnemolla; Claudia Cantoni; Jessica Grassi; Stefania Marcenaro; Nicolas Reymond; Massimo Vitale; Lorenzo Moretta; Marc Lopez; Alessandro Moretta

Human natural killer (NK) cells express a series of activating receptors and coreceptors that are involved in recognition and killing of target cells. In this study, in an attempt to identify the cellular ligands for such triggering surface molecules, mice were immunized with NK-susceptible target cells. On the basis of a functional screening, four mAbs were selected that induced a partial down-regulation of the NK-mediated cytotoxicity against the immunizing target cells. As revealed by biochemical analysis, three of such mAbs recognized molecules of ∼70 kD. The other mAb reacted with two distinct molecules of ∼65 and 60 kD, respectively. Protein purification followed by tryptic digestion and mass spectra analysis, allowed the identification of the 70 kD and the 65/60 kD molecules as PVR (CD155) and Nectin-2 δ/α (CD112), respectively. PVR-Fc and Nectin-2-Fc soluble hybrid molecules brightly stained COS-7 cells transfected with the DNAM-1 (CD226) construct, thus providing direct evidence that both PVR and Nectin-2 represent specific ligands for the DNAM-1 triggering receptor. Finally, the surface expression of PVR or Nectin-2 in cell transfectants resulted in DNAM-1–dependent enhancement of NK-mediated lysis of these target cells. This lysis was inhibited or even virtually abrogated upon mAb-mediated masking of DNAM-1 (on NK cells) or PVR or Nectin-2 ligands (on cell transfectants).


European Journal of Immunology | 1999

NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells

Simona Sivori; Daniela Pende; Cristina Bottino; Emanuela Marcenaro; Anna Pessino; Roberto Biassoni; Lorenzo Moretta; Alessandro Moretta

NKp46 is a novel triggering receptor expressed by all human NK cells that is involved in natural cytotoxicity. In this study we show that the surface density of NKp46 may vary in different NK cells and that a precise correlation exists between the NKp46 phenotype of NK clones and their natural cytotoxicity against HLA‐class I‐unprotected allogeneic or xenogeneic cells. Thus, NKp46bright clones efficiently lysed human and murine tumor cells while NKp46dull clones were poorly cytolytic against both types of target cells. We also show that the NKp46 phenotype of NK clones correlates with their ability to lyse HLA‐class I‐unprotected autologous cells. Finally, NKp46 was found to be deeply involved in the natural cytotoxicity mediated by freshly derived NK cells. This was indicated both by the inhibition of cytolysis after monoclonal antibody‐mediated masking of NKp46 and by the correlation existing between the natural cytotoxicity of fresh NK cells derived from different donors and their NKp46 phenotype. In conclusion, these studies strongly support the concept that NKp46 plays a central role in the physiological triggering of NK cells and, as a consequence (in concert with killer inhibitory receptors), in the NK‐mediated clearance of abnormal cells expressing inadequate amounts of HLA‐class I molecules.


Immunological Reviews | 1997

Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes

Alessandro Moretta; Roberto Biassoni; Cristina Bottino; Daniela Pende; Massimo Vitale; Alessandro Poggi; Maria Cristina Mingari; Lorenzo Moretta

Summary: Human NK cells express several specialized inhibitory receptors that recognize major histocompatibility complex (MHC) class I molecules expressed on normal cells. The lack of expression of one or more HLA CLASS I alleles leads to NK‐mediated target cell lysis. Receptors specific for groups of HLA‐C (p58), HLA‐B (p70) and HLA‐A (p140) alleles belong to the Ig superfamily with two or three Ig‐like domains in their extracellular portion, and a long cytoplasmic tail containing ITIM motifs and associated with a non‐polar transmembrane portion. In contrast, the CD94/NKG2‐A receptor complex is composed of type II proteins with a C‐type lectin domain which displays a more broad specificity for different class I alleles. Recently, activatory forms of the HLA‐C‐specific receptors have been identified in some donors. They are virtually identical to the inhibitory forms in their extracellular portions, but display a short cytoplasmic tail lacking ITIM motifs associated with a Lys‐containing transmembrane portion (p50). A subset of activated T‐lymphocytes. primarily CD8+ and oligoclonal or monoclonal in nature, express NK‐type class I‐specific receptors. These receptors exert an inhibitory activity on T‐cell receptor‐mediated functions and may provide an important mechanism of down‐regulation of T‐cell responses.


European Journal of Immunology | 2001

Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin

Daniela Pende; Claudia Cantoni; Paola Rivera; Massimo Vitale; Roberta Castriconi; Stefania Marcenaro; Marina Nanni; Roberto Biassoni; Cristina Bottino; Alessandro Moretta; Lorenzo Moretta

NKG2D is a recently described activating receptor expressed by both NK cells and CTL. In this study we investigated the role of NKG2D in the natural cytolysis mediated by NK cell clones. The role of NKG2D varied depending on the type of target cells analyzed. Lysis of various tumors appeared to be exclusively natural cytotoxicity receptors (NCR) dependent. In contrast, killing of anothergroup of target cells, including not only the epithelial cell lines HELA and IGROV‐1, but also the FO‐1 melanoma, the JA3 leukemia, the Daudi Burkitt lymphoma and even normal PHA‐induced lymphoblasts, involved both NCR and NKG2D. Notably, NK cell clones expressing low surface densities of NCR (NCRdull) could lyse these tumors in an exclusively NKG2D‐dependent fashion. Remarkably, notall of these targets expressed MICA/B, thus implying the existence of additional ligands recognized by NKG2D, possibly represented by GPI‐linked molecules. Finally, we show that the engagement of different HLA class I‐specific inhibitory receptors by either specific antibodies or the appropriate HLA class I ligand led to inhibition of NKG2D‐mediated NK cell triggering.


Blood | 2009

Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity

Daniela Pende; Stefania Marcenaro; Michela Falco; Stefania Martini; Maria Ester Bernardo; Daniela Montagna; Elisa Romeo; Céline Cognet; Miryam Martinetti; Rita Maccario; Maria Cristina Mingari; Eric Vivier; Lorenzo Moretta; Franco Locatelli; Alessandro Moretta

We analyzed 21 children with leukemia receiving haploidentical hematopoietic stem cell transplantation (haplo-HSCT) from killer immunoglobulin (Ig)-like receptors (KIR) ligand-mismatched donors. We showed that, in most transplantation patients, variable proportions of donor-derived alloreactive natural killer (NK) cells displaying anti-leukemia activity were generated and maintained even late after transplantation. This was assessed through analysis of donor KIR genotype, as well as through phenotypic and functional analyses of NK cells, both at the polyclonal and clonal level. Donor-derived KIR2DL1(+) NK cells isolated from the recipient displayed the expected capability of selectively killing C1/C1 target cells, including patient leukemia blasts. Differently, KIR2DL2/3(+) NK cells displayed poor alloreactivity against leukemia cells carrying human leukocyte antigen (HLA) alleles belonging to C2 group. Unexpectedly, this was due to recognition of C2 by KIR2DL2/3, as revealed by receptor blocking experiments and by binding assays of soluble KIR to HLA-C transfectants. Remarkably, however, C2/C2 leukemia blasts were killed by KIR2DL2/3(+) (or by NKG2A(+)) NK cells that coexpressed KIR2DS1. This could be explained by the ability of KIR2DS1 to directly recognize C2 on leukemia cells. A role of the KIR2DS2 activating receptor in leukemia cell lysis could not be demonstrated. Altogether, these results may have important clinical implications for the selection of optimal donors for haplo-HSCT.


Immunological Reviews | 2001

Human natural killer cell receptors and co‐receptors

Roberto Biassoni; Claudia Cantoni; Daniela Pende; Simona Sivori; Silvia Parolini; Massimo Vitale; Cristina Bottino; Alessandro Moretta

Summary: In the absence of sufficient signaling by their HLA class I‐specific inhibitory receptors, human natural killer (NK) cells become activated and display potent cytotoxicity against cells that are either HLA class I negative or deficient. This indicates that the NK receptors responsible for the induction of cytotoxicity recognize ligands on target cells different from HLA class I molecules. On this basis, the process of NK‐cell triggering can be considered as a mainly non‐MHC‐restricted mechanism. The recent identification of a group of NK‐specific triggering surface molecules has allowed a first series of pioneering studies on the functional/molecular characteristics of such receptors. The first three members of a receptor family that has been termed natural cytotoxicity receptors (NCR) are represented by NKp46, NKp44 and NKp30. These receptors are strictly confined to NK cells, and their engagement induces a strong activation of NK‐mediated cytolysis. A direct correlation exists between the surface density of NCR and the ability of NK cells to kill various target cells. Importantly, mAb‐mediated blocking of these receptors has been shown to suppress cytotoxicity against most NK‐susceptible target cells. However, the process of NK‐cell triggering during target cell lysis may also depend on the concerted action of NCR and other triggering receptors, such as NKG2D, or surface molecules, including 2B4 and NKp80, that appear to function as co‐receptors rather than as true receptors. Notably, a dysfunction of 2B4 has been associated with a severe form of immunodeficiency termed X‐linked lymphoproliferative disease. Future studies will clarify whether also the altered expression and/or function of other NK‐triggering molecules may represent a possible cause of immunological disorders.


Immunological Reviews | 2006

Effector and regulatory events during natural killer–dendritic cell interactions

Lorenzo Moretta; Guido Ferlazzo; Cristina Bottino; Massimo Vitale; Daniela Pende; Maria Cristina Mingari; Alessandro Moretta

Summary:  The different cell types of the innate immune system can interact with each other and influence the quality and strength of an immune response. The cross talk between natural killer (NK) cells and myeloid dendritic cells (DCs) leads to NK cell activation and DC maturation. Activated NK cells are capable of killing DCs that fail to undergo proper maturation (‘DC editing’). Encounters between NK cells and DCs occur in both inflamed peripheral tissues and lymph nodes, where both cell types are recruited by chemokines released in the early phases of inflammatory responses. Different NK cell subsets (CD56brightCD16− versus CD56+CD16+) differ in their homing capabilities. In particular, CD56brightCD16− NK cells largely predominate the lymph nodes. In addition, these two subsets display major functional differences in their cytolytic activity, cytokine production, and ability to undergo proliferation. NK cell functions are also greatly influenced by the presence of polarizing cytokines such as interleukin (IL)‐12 and IL‐4. The cytokine microenvironment reflects the presence of different cell types that secrete such cytokines in response to microbial products acting on different Toll‐like receptors (TLRs). Moreover, NK cells themselves can respond directly to microbial products by means of TLR3 and TLR9. Thus, it appears that the final outcome of a response to microbial infection may greatly vary as a result of the interactions occurring between different pathogen‐derived products and different cell types of the innate immunity system. These interactions also determine the quality and strength of the subsequent adaptive responses. Remarkably, NK cells appear to play a key role in this complex network.


Journal of Clinical Investigation | 2009

NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo

Tadepally Lakshmikanth; Shannon Burke; Talib Hassan Ali; Silvia Kimpfler; Francesco Ursini; Loredana Ruggeri; Marusca Capanni; Viktor Umansky; Annette Paschen; Antje Sucker; Daniela Pende; Veronika Groh; Roberto Biassoni; Petter Höglund; Masashi Kato; Kazuko Shibuya; Dirk Schadendorf; Andrea Anichini; Soldano Ferrone; Andrea Velardi; Klas Kärre; Akira Shibuya; Ennio Carbone; Francesco Colucci

NK cells use a variety of receptors to detect abnormal cells, including tumors and their metastases. However, in the case of melanoma, it remains to be determined what specific molecular interactions are involved and whether NK cells control metastatic progression and/or the route of dissemination. Here we show that human melanoma cell lines derived from LN metastases express ligands for natural cytotoxicity receptors (NCRs) and DNAX accessory molecule-1 (DNAM-1), two emerging NK cell receptors key for cancer cell recognition, but not NK group 2 member D (NKG2D). Compared with cell lines derived from metastases taken from other anatomical sites, LN metastases were more susceptible to NK cell lysis and preferentially targeted by adoptively transferred NK cells in a xenogeneic model of cell therapy. In mice, DNAM-1 and NCR ligands were also found on spontaneous melanomas and melanoma cell lines. Interference with DNAM-1 and NCRs by antibody blockade or genetic disruption reduced killing of melanoma cells. Taken together, these results show that DNAM-1 and NCRs are critical for NK cell-mediated innate immunity to melanoma cells and provide a background to design NK cell-based immunotherapeutic strategies against melanoma and possibly other tumors.


Blood | 2014

HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders

Alice Bertaina; Pietro Merli; Sergio Rutella; Daria Pagliara; Maria Ester Bernardo; Riccardo Masetti; Daniela Pende; Michela Falco; Rupert Handgretinger; Francesca Moretta; Barbarella Lucarelli; Letizia Pomponia Brescia; Giuseppina Li Pira; Manuela Testi; Caterina Cancrini; Nabil Kabbara; Rita Carsetti; Andrea Finocchi; Alessandro Moretta; Lorenzo Moretta; Franco Locatelli

Twenty-three children with nonmalignant disorders received HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) after ex vivo elimination of αβ(+) T cells and CD19(+) B cells. The median number of CD34(+), αβ(+)CD3(+), and B cells infused was 16.8 × 10(6), 40 × 10(3), and 40 × 10(3) cells/kg, respectively. No patient received any posttransplantation pharmacologic prophylaxis for graft-versus-host disease (GVHD). All but 4 patients engrafted, these latter being rescued by a second allograft. Three patients experienced skin-only grade 1 to 2 acute GVHD. No patient developed visceral acute or chronic GVHD. Cumulative incidence of transplantation-related mortality was 9.3%. With a median follow-up of 18 months, 21 of 23 children are alive and disease-free, the 2-year probability of disease-free survival being 91.1%. Recovery of γδ(+) T cells was prompt, but αβ(+) T cells progressively ensued over time. Our data suggest that this novel graft manipulation strategy is safe and effective for haplo-HSCT. This trial was registered at www.clinicaltrials.gov as #NCT01810120.


Cancer Research | 2004

Natural Killer Cell-Mediated Killing of Freshly Isolated Neuroblastoma Cells Critical Role of DNAX Accessory Molecule-1–Poliovirus Receptor Interaction

Roberta Castriconi; Alessandra Dondero; Maria Valeria Corrias; Edoardo Lanino; Daniela Pende; Lorenzo Moretta; Cristina Bottino; Alessandro Moretta

In the present study, we assessed the susceptibility of freshly isolated neuroblastoma cells to killing mediated by normal human natural killer (NK) cells and analyzed the receptor–ligand interactions that regulate this event. We show that killing of freshly isolated neuroblasts, similar to neuroblastoma cell lines, involves NKp46 and NKp30 (natural cytotoxicity receptors). However, freshly isolated neuroblasts were generally more resistant to NK-mediated lysis than conventional neuroblastoma cell lines. Moreover, a significant heterogeneity in susceptibility to lysis existed among neuroblastomas derived from different patients. Remarkably, susceptibility to lysis directly correlated with the surface expression, on neuroblasts, of poliovirus receptor [PVR (CD155)], a ligand for the DNAX accessory molecule-1 [DNAM-1 (CD226)] triggering receptor expressed by NK cells. Indeed, PVR-expressing neuroblastomas were efficiently killed by NK cells. Moreover, monoclonal antibody-mediated masking of either DNAM-1 (on NK cells) or PVR (on neuroblasts) resulted in strong inhibition of tumor cell lysis. Thus, assessment of the PVR surface levels may represent a novel useful criterion to predict the susceptibility/resistance of neuroblastomas to NK-mediated killing.

Collaboration


Dive into the Daniela Pende's collaboration.

Top Co-Authors

Avatar

Lorenzo Moretta

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michela Falco

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge