Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Puzzo is active.

Publication


Featured researches published by Daniela Puzzo.


The Journal of Neuroscience | 2008

Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus.

Daniela Puzzo; Lucia Privitera; Elena Leznik; Mauro Fa; Agnieszka Staniszewski; Agostino Palmeri; Ottavio Arancio

Amyloid-β (Aβ) peptides are produced in high amounts during Alzheimers disease, causing synaptic and memory dysfunction. However, they are also released in lower amounts in normal brains throughout life during synaptic activity. Here we show that low picomolar concentrations of a preparation containing both Aβ42 monomers and oligomers cause a marked increase of hippocampal long-term potentiation, whereas high nanomolar concentrations lead to the well established reduction of potentiation. Picomolar levels of Aβ42 also produce a pronounced enhancement of both reference and contextual fear memory. The mechanism of action of picomolar Aβ42 on both synaptic plasticity and memory involves α7-containing nicotinic acetylcholine receptors. These findings strongly support a model for Aβ effects in which low concentrations play a novel positive, modulatory role on neurotransmission and memory, whereas high concentrations play the well known detrimental effect culminating in dementia.


The EMBO Journal | 2004

RAGE potentiates Aβ‐induced perturbation of neuronal function in transgenic mice

Ottavio Arancio; Hui Ping Zhang; Xi Chen; Chang Lin; Fabrizio Trinchese; Daniela Puzzo; Shumin Liu; Ashok N. Hegde; Shi Fang Yan; Alan Stern; John S. Luddy; Lih-Fen Lue; Douglas G. Walker; Alex E. Roher; Manuel Buttini; Lennart Mucke; Weiying Li; Ann Marie Schmidt; Mark S. Kindy; Paul A. Hyslop; David M. Stern; Shirley ShiDu Yan

Receptor for Advanced Glycation Endproducts (RAGE), a multiligand receptor in the immunoglobulin superfamily, functions as a signal‐transducing cell surface acceptor for amyloid‐beta peptide (Aβ). In view of increased neuronal expression of RAGE in Alzheimers disease, a murine model was developed to assess the impact of RAGE in an Aβ‐rich environment, employing transgenics (Tgs) with targeted neuronal overexpression of RAGE and mutant amyloid precursor protein (APP). Double Tgs (mutant APP (mAPP)/RAGE) displayed early abnormalities in spatial learning/memory, accompanied by altered activation of markers of synaptic plasticity and exaggerated neuropathologic findings, before such changes were found in mAPP mice. In contrast, Tg mice bearing a dominant‐negative RAGE construct targeted to neurons crossed with mAPP animals displayed preservation of spatial learning/memory and diminished neuropathologic changes. These data indicate that RAGE is a cofactor for Aβ‐induced neuronal perturbation in a model of Alzheimers‐type pathology, and suggest its potential as a therapeutic target to ameliorate cellular dysfunction.


The Journal of Neuroscience | 2009

Phosphodiesterase 5 Inhibition Improves Synaptic Function, Memory, and Amyloid-β Load in an Alzheimer's Disease Mouse Model

Daniela Puzzo; Agnieszka Staniszewski; Shi Xian Deng; Lucia Privitera; Elena Leznik; Shumin Liu; Hong Zhang; Yan Feng; Agostino Palmeri; Donald W. Landry; Ottavio Arancio

Memory loss, synaptic dysfunction, and accumulation of amyloid β-peptides (Aβ) are major hallmarks of Alzheimers disease (AD). Downregulation of the nitric oxide/cGMP/cGMP-dependent protein kinase/c-AMP responsive element-binding protein (CREB) cascade has been linked to the synaptic deficits after Aβ elevation. Here, we report that the phosphodiesterase 5 inhibitor (PDE5) sildenafil (Viagra), a molecule that enhances phosphorylation of CREB, a molecule involved in memory, through elevation of cGMP levels, is beneficial against the AD phenotype in a mouse model of amyloid deposition. We demonstrate that the inhibitor produces an immediate and long-lasting amelioration of synaptic function, CREB phosphorylation, and memory. This effect is also associated with a long-lasting reduction of Aβ levels. Given that side effects of PDE5 inhibitors are widely known and do not preclude their administration to a senile population, these drugs have potential for the treatment of AD and other diseases associated with elevated Aβ levels.


The Journal of Neuroscience | 2005

Amyloid-β Peptide Inhibits Activation of the Nitric Oxide/cGMP/cAMP-Responsive Element-Binding Protein Pathway during Hippocampal Synaptic Plasticity

Daniela Puzzo; Ottavio V. Vitolo; Fabrizio Trinchese; Joel P. Jacob; Agostino Palmeri; Ottavio Arancio

Amyloid-β (Aβ), a peptide thought to play a crucial role in Alzheimers disease (AD), has many targets that, in turn, activate different second-messenger cascades. Interestingly, Aβ has been found to markedly impair hippocampal long-term potentiation (LTP). To identify a new pathway that might be responsible for such impairment, we analyzed the role of the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP/cGMP-dependent protein kinase (cGK)/cAMP-responsive element-binding protein (CREB) cascade because of its involvement in LTP. The use of the NO donor 2-(N,N-dethylamino)-diazenolate-2-oxide diethylammonium salt (DEA/NO), the sGC stimulator 3-(4-amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine, or the cGMP-analogs 8-bromo-cGMP and 8-(4-chlorophenylthio)-cGMP reversed the Aβ-induced impairment of CA1-LTP through cGK activation. Furthermore, these compounds reestablished the enhancement of CREB phosphorylation occurring during LTP in slices exposed to Aβ. We also found that Aβ blocks the increase in cGMP immunoreactivity occurring immediately after LTP and that DEA/NO counteracts the effect of Aβ. These results strongly suggest that, when modulating hippocampal synaptic plasticity, Aβ downregulates the NO/cGMP/cGK/CREB pathway; thus, enhancement of the NO/cGMP signaling may provide a novel approach to the treatment of AD and other neurodegenerative diseases with elevated production of Aβ.


Annals of Neurology | 2011

Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory

Daniela Puzzo; Lucia Privitera; Mauro Fa; Agnieszka Staniszewski; Gakuji Hashimoto; Fahad Aziz; Mikako Sakurai; Elena M. Ribe; Carol M. Troy; Marc Mercken; Sonia S. Jung; Agostino Palmeri; Ottavio Arancio

The goal of this study was to investigate the role of endogenous amyloid‐β peptide (Aβ) in healthy brain.


Neuron | 2007

A GluR1-cGKII Interaction Regulates AMPA Receptor Trafficking

Yafell Serulle; Shuang Zhang; Ipe Ninan; Daniela Puzzo; Maria McCarthy; Latika Khatri; Ottavio Arancio; Edward B. Ziff

Trafficking of AMPA receptors (AMPARs) is regulated by specific interactions of the subunit intracellular C-terminal domains (CTDs) with other proteins, but the mechanisms involved in this process are still unclear. We have found that the GluR1 CTD binds to cGMP-dependent protein kinase II (cGKII) adjacent to the kinase catalytic site. Binding of GluR1 is increased when cGKII is activated by cGMP. cGKII and GluR1 form a complex in the brain, and cGKII in this complex phosphorylates GluR1 at S845, a site also phosphorylated by PKA. Activation of cGKII by cGMP increases the surface expression of AMPARs at extrasynaptic sites. Inhibition of cGKII activity blocks the surface increase of GluR1 during chemLTP and reduces LTP in the hippocampal slice. This work identifies a pathway, downstream from the NMDA receptor (NMDAR) and nitric oxide (NO), which stimulates GluR1 accumulation in the plasma membrane and plays an important role in synaptic plasticity.


Expert Opinion on Drug Discovery | 2015

Rodent models for Alzheimer’s disease drug discovery

Daniela Puzzo; Walter Gulisano; Agostino Palmeri; Ottavio Arancio

Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by memory loss and personality changes, leading to dementia. Histopathological hallmarks are represented by aggregates of beta-amyloid peptide (Aβ) in senile plaques and deposition of hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Rare forms of early onset familial Alzheimer’s disease are due to gene mutations. This has prompted researchers to develop genetically modified animals that could recapitulate the main features of the disease. The use of these models is complemented by non-genetically modified animals. Areas covered: This review summarizes the characteristics of the most used transgenic (Tg) and non-Tg models of AD. The authors have focused on models mainly used in their laboratories including amyloid precursor protein (APP) Tg2576, APP/presenilin 1, 3xAD, single h-Tau, non-Tg mice treated with acute injections of Aβ or tau, and models of physiological aging. Expert opinion: Animal models of disease might be very useful for studying the pathophysiology of the disease and for testing new therapeutics in preclinical studies but they do not reproduce the entire clinical features of human AD. When selecting a model, researchers should consider the various factors that might influence the phenotype. They should also consider the timing of testing/treating animals since the age at which each model develops certain aspects of the AD pathology varies.


Neuropsychiatric Disease and Treatment | 2008

Role of phosphodiesterase 5 in synaptic plasticity and memory.

Daniela Puzzo; Salvatore Sapienza; Ottavio Arancio; Agostino Palmeri

Phosphodiesterases (PDEs) are enzymes that break down the phosphodiesteric bond of the cyclic nucleotides, cAMP and cGMP, second messengers that regulate many biological processes. PDEs participate in the regulation of signal transduction by means of a fine regulation of cyclic nucleotides so that the response to cell stimuli is both specific and activates the correct third messengers. Several PDE inhibitors have been developed and used as therapeutic agents because they increase cyclic nucleotide levels by blocking the PDE function. In particular, sildenafil, an inhibitor of PDE5, has been mainly used in the treatment of erectile dysfunction but is now also utilized against pulmonary hypertension. This review examines the physiological role of PDE5 in synaptic plasticity and memory and the use of PDE5 inhibitors as possible therapeutic agents against disorders of the central nervous system (CNS).


Biochemical Pharmacology | 2014

Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines

Daniela Puzzo; Linda Lee; Agostino Palmeri; Giorgio Calabrese; Ottavio Arancio

In Alzheimers disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology - assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice - contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms.


Scientific Reports | 2016

Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory

Mauro Fa; Daniela Puzzo; Roberto Piacentini; Agnieszka Staniszewski; Hong Zhang; María Antonia Baltrons; D. D. Li Puma; Ishita Chatterjee; Jing-Cheng Li; Faisal Saeed; Henry L. Berman; Cristian Ripoli; Walter Gulisano; Juana Gonzalez; H. Tian; J. A. Costa; P. Lopez; Eliot J. Davidowitz; Wai Haung Yu; V. Haroutunian; L. M. Brown; Agostino Palmeri; Einar M. Sigurdsson; Karen Duff; Andrew F. Teich; Lawrence S. Honig; M. Sierks; James G. Moe; Luciano D’Adamio; Claudio Grassi

Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer’s disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels. The impairment is immediate as it raises as soon as 20 min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oAβ to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and Aβ on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with Aβ and tau pathology.

Collaboration


Dive into the Daniela Puzzo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Grassi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge