Daniela Remane
Saarland University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Remane.
Analytical and Bioanalytical Chemistry | 2011
Markus R. Meyer; Daniela Remane; Anika A. Philipp; Armin A. Weber; Hans H. Maurer
Today, immunoassays and several chromatographic methods are in use for drug screening in clinical and forensic toxicology and in doping control. For further proof of the authors’ new metabolite-based liquid chromatography-mass spectrometry (LC-MSn) screening concept, the detectability of drugs of abuse and their metabolites using this screening approach was studied. As previously reported, the corresponding reference library was built up with MS2 and MS3 wideband spectra using a LXQ linear ion trap with electrospray ionization in the positive mode and full scan information-dependent acquisition. In addition to the parent drug spectra recorded in methanolic solution, metabolite spectra were identified after protein precipitation of urine from rats after administration of the corresponding drugs and added to the library. This consists now of data of over 900 parent compounds, including 87 drugs of abuse, and of over 2,300 metabolites and artifacts, among them 436 of drugs of abuse. Recovery, process efficiency, matrix effects, and limits of detection for selected drugs of abuse were determined using spiked human urine, and the resulting data have been acceptable. Using two automatic data evaluation tools (ToxID and SmileMS), the intake of 54 of the studied drugs of abuse could be confirmed in urine samples of drug users after protein precipitation and LC separation. The following drugs classes were covered: stimulants, designer drugs, hallucinogens, (synthetic) cannabinoids, opioids, and selected benzodiazepines. The presented LC-MSn method complements the well-established gas chromatography-mass spectroscopy procedure in the authors’ laboratory.
Rapid Communications in Mass Spectrometry | 2010
Daniela Remane; Markus R. Meyer; Hans H. Maurer
In multi-analyte procedures, sufficient separation is important to avoid interferences, particularly when using liquid chromatography/mass spectrometry (LC/MS) because of possible ion suppression or enhancement. However, even using ultra-high-performance LC, baseline separation is not always possible. For development and validation of an LC/MS/MS approach for quantification of 140 antidepressants, benzodiazepines, neuroleptics, beta-blockers, oral antidiabetics, and analytes measured in the context of brain death diagnosis in plasma, the extent of ion suppression or enhancement of co-eluting analytes within and between the drug classes was investigated using atmospheric-pressure chemical ionization (APCI) or electrospray ionization (ESI). Within the drug classes, five analytes showed ion enhancement of over 25% and six analytes ion suppression of over 25% using APCI and 16 analytes ion suppression of over 25% using ESI. Between the drug classes, two analytes showed ion suppression of over 25% using APCI. Using ESI, one analyte showed ion enhancement of over 25% and five analytes ion suppression of over 25%. These effects may influence the drug quantification using calibrators made in presence of overlapping and thus interfering analytes. Ion suppression/enhancement effects induced by co-eluting drugs of different classes present in the patient sample may also lead to false measurements using class-specific calibrators made in absence of overlapping and thus interfering analytes. In conclusion, ion suppression and enhancement tests are essential during method development and validation in LC/MS/MS multi-analyte procedures, with special regards to co-eluting analytes.
Analytical and Bioanalytical Chemistry | 2011
Markus R. Meyer; Daniela Remane; Armin A. Weber; Hans H. Maurer
In contrast to GC-MS libraries, currently available LC-MS libraries for toxicological detection contain besides parent drugs only some main metabolites limiting their applicability for urine screening. Therefore, a metabolite-based LC-MSn screening procedure was developed and exemplified for antidepressants. The library was built up with MS2 and MS3 wideband spectra using an LXQ linear ion trap with electrospray ionization in the positive mode and full-scan information-dependent acquisition. Pure substance spectra were recorded in methanolic solution and metabolite spectra in urine from rats after administration of the corresponding drugs. After identification, the metabolite spectra were added to the library. Various drugs and metabolites could be sufficiently separated. Recovery, process efficiency, matrix effects, and limits of detection for selected drugs were determined using protein precipitation. Automatic data evaluation was performed using ToxID and SmileMS software. The library consists of over 700 parent compounds including 45 antidepressants, over 1,600 metabolites, and artifacts. Protein precipitation led to sufficient results for sample preparation. ToxID and SmileMS were both suitable for target screening with some pros and cons. In our study, only SmileMS was suitable for untargeted screening being not limited to precursor selection. The LC-MSn method was suitable for urine screening as exemplified for antidepressants. It also allowed detecting unknown compounds based on known fragment structures. As ion suppression can never be excluded, it is advantageous to have several targets per drug. Furthermore, the detection of metabolites confirms the body passage. The presented LC-MSn method complements established GC-MS or LC-MS procedures in the authors’ lab.
Rapid Communications in Mass Spectrometry | 2010
Daniela Remane; Markus R. Meyer; Hans H. Maurer
In clinical and forensic toxicology, multi-analyte procedures are very useful to quantify drugs and poisons of different classes in one run. For liquid chromatographic/tandem mass spectrometric (LC/MS/MS) multi-analyte procedures, often only a limited number of stable-isotope-labeled internal standards (SIL-ISs) are available. If an SIL-IS is used for quantification of other analytes, it must be excluded that the co-eluting native analyte influences its ionization. Therefore, the effect of ion suppression and enhancement of fourteen SIL-ISs caused by their native analogues has been studied. It could be shown that the native analyte concentration influenced the extent of ion suppression and enhancement effects leading to more suppression with increasing analyte concentration especially when electrospray ionization (ESI) was used. Using atmospheric-pressure chemical ionization (APCI), methanolic solution showed mainly enhancement effects, whereas no ion suppression and enhancement effect, with one exception, occurred when plasma extracts were used under these conditions. Such differences were not observed using ESI. With ESI, eleven SIL-ISs showed relevant suppression effects, but only one analyte showed suppression effects when APCI was used. The presented study showed that ion suppression and enhancement tests using matrix-based samples of different sources are essential for the selection of ISs, particularly if used for several analytes to avoid incorrect quantification. In conclusion, only SIL-ISs should be selected for which no suppression and enhancement effects can be observed. If not enough ISs are free of ionization interferences, a different ionization technique should be considered.
Analytical and Bioanalytical Chemistry | 2010
Daniela Remane; Markus R. Meyer; Frank T. Peters; Hans H. Maurer
In clinical and forensic toxicology, different extraction procedures as well as analytical methods are used to monitor different drug classes of interest in biosamples. Multi-analyte procedures are preferable because they make the analytical strategy much simpler and cheaper and allow monitoring of analytes of different drug classes in one single body sample. For development of such a multi-analyte liquid chromatography-tandem mass spectrometry approach, a rapid and simple method for the extraction of 136 analytes from the following drug classes has been established: antidepressants, neuroleptics, benzodiazepines, beta-blockers, oral antidiabetics, and analytes relevant in the context of brain death diagnosis. Recovery, matrix effects, and process efficiency were tested at two concentrations using six different lots of blank plasma. The recovery results obtained using absolute peak areas were compared with those calculated using area ratios analyte/internal standard. The recoveries ranged from 8% to 84% for antidepressants, from 10% to 79% for neuroleptics, from 60% to 81% for benzodiazepines, from 1% to 71% for beta-blockers, from 10% to 73% for antidiabetics, and from 60% to 86% for analytes relevant in the context of brain death diagnosis. With the exception of 52 analytes at low concentration and 37 at high concentration, all compounds showed recoveries with acceptable variability with less than 15% and 20% coefficients of variation. Recovery results obtained by comparing peak area ratios were nearly the same, but 35 analytes at low concentration and 17 at high concentration lay above the acceptance criteria. Matrix effects with more than 25% were observed for 18 analytes. The results were acceptable for 119 analytes at high concentrations.
Analytical and Bioanalytical Chemistry | 2011
Daniela Remane; Markus R. Meyer; Hans H. Maurer
For fast and reliable screening, identification, and quantification of as many analytes as possible, multi-analyte approaches are very useful in clinical and forensic toxicology. Using ultra high performance liquid chromatography-tandem mass spectrometry, such an approach has been developed for blood plasma analysis after simple liquid–liquid extraction. In the present paper, validation and application is described for 31 neuroleptics, 28 benzodiazepines, and Z-drugs (zaleplone, zolpidem, and zopiclone). The validation parameters included recovery, matrix effects, process efficiency, ion suppression/enhancement of co-eluting analytes, selectivity, crosstalk, accuracy and precision, stabilities, and limits of quantification and detection. The results showed that the approach was selective, sensitive, accurate, and precise for 24 neuroleptics and 21 benzodiazepines and Z-drugs. The remaining analytes were unstable and/or too low dosed. Cost- and time-saving one-point calibration was applicable only for half of the analytes. The applicability was successfully shown for most of the drugs by analyzing authentic plasma samples and external quality control samples.
Analytical and Bioanalytical Chemistry | 2011
Daniela Remane; Markus R. Meyer; Hans H. Maurer
Multi-analyte procedures are of great interest in clinical and forensic toxicology making the analytical process much simpler, faster, and cheaper and allow monitoring of analytes of different drug classes in one single body sample. The aim of the present study was to validate an ultra high performance liquid chromatographic-tandem mass spectrometric approach for fast target screening and quantification of 34 antidepressants in plasma after simple liquid–liquid extraction as part of a multi-analyte procedure for over 130 drugs. The validation process including recovery, matrix effects, process efficiency, ion suppression/enhancement of co-eluting analytes (already published), selectivity, cross talk, accuracy and precision, stabilities, and limits of quantification and detection showed that the approach was selective, sensitive, accurate, and precise for 28 of the 34 tested drugs. The applicability was successfully tested by analyzing authentic plasma samples and external quality control samples. Furthermore, it could be shown that time- and cost-saving one-point calibration was applicable for 21 drugs for daily routine and especially in emergency cases.
Journal of Mass Spectrometry | 2012
Markus R. Meyer; Armin A. Weber; Daniela Remane; Andreas H. Ewald; Frank T. Peters; Hans H. Maurer
In contrast to libraries with highly reproducible gas chromatography electron ionization mass spectra, current liquid chromatography (LC-MS) libraries are limited to specific instrument types. Therefore, the aim of the study was to prove whether a recently developed linear ion trap (LIT) LC-MS(n) screening approach and reference library can be transferred to an LC-MS/MS system with a quadrupole-LIT hybrid mass analyzer using SmileMS, a sophisticated search algorithm. The LIT reference library was built with MS² and MS³ wideband spectra recorded on a ThermoFisher LXQ LIT with electrospray ionization in positive mode and full-scan data-dependent acquisition (DDA). Collision parameter optimizations, including different scan types and energies, were performed on an Applied Biosystems QTRAP 4000 system using electrospray ionization in positive mode and full-scan DDA. Modified library sets were generated to improve the detection of a compound by the used search algorithm. Additionally, 100 authentic human urine samples were screened by both systems for proof of applicability. In the applicability study, 533 compounds were detected by the LXQ and 477 by the QTRAP system using enhanced product ion scan and a modified database. The presented data showed that the LIT screening approach and reference library could be used successfully on a QTRAP instrument with some limitations. These should be overcome by further optimizations regarding DDA settings for better sensitivity and further library modifications to reduce spectra mismatches.
Journal of Chromatography B | 2015
Daniela Remane; Soeren Grunwald; Henrike Hoeke; Andrea Mueller; Stefan Roeder; Martin von Bergen; Dirk K. Wissenbach
During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples.
Therapeutic Drug Monitoring | 2014
Daniela Remane; Deborah Montenarh; Markus Meyer; Hans H. Maurer
Background: A multianalyte procedure (MAP) for the screening and quantification of drugs of different classes using ultra–high-performance liquid chromatography with tandem-mass spectrometric detection (UHPLC–MS/MS) was established. The aim was to elucidate whether this general approach could be transferred to the determination of drugs relevant for brain death diagnosis (BDD). This part of the MAP should cover alfentanil, etomidate, fentanyl, ketamine, morphine, piritramide, and sufentanil as an addition to the established gas chromatographic–mass spectrometric approach for the determination of propofol, barbiturates, and some benzodiazepines. Methods: This UHPLC–MS/MS approach based on liquid–liquid extraction was validated with respect to selectivity, recovery, matrix effects, process efficiency, ion suppression/enhancement, accuracy and precision, stabilities, and limits of quantification. Results: The approach was selective for the tested analytes. Accurate and precise quantification was achieved for all analytes with the exception of alfentanil and morphine. Validation data for fentanyl, piritramide, and sufentanil were acceptable, but the lowest calibrator concentration had to be set higher than half of the lower therapeutic range as recommended for BDD. Conclusions: Only etomidate and ketamine fulfill both validation and BDD criteria. Nevertheless, the MAP allowed the simultaneous screening and quantification of >90 other central nervous system–suppressing drugs with the same extract in the same run. For the screening and accurate and precise quantification of low concentrations of alfentanil, fentanyl, morphine, piritramide, and sufentanil, methods with alternative sample preparation and analysis techniques must be developed.