Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Sachs is active.

Publication


Featured researches published by Daniela Sachs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Morphine peripheral analgesia depends on activation of the PI3Kγ/AKT/nNOS/NO/KATP signaling pathway

Thiago M. Cunha; Danilo Roman-Campos; Celina M.C. Lotufo; Hugo L. Duarte; Guilherme R. Souza; Waldiceu A. Verri; Mani I. Funez; Quintino M. Dias; Ieda R. S. Schivo; Andressa C. Domingues; Daniela Sachs; Silvana Chiavegatto; Mauro M. Teixeira; John S. Hothersall; Jader Santos Cruz; Fernando Q. Cunha; Sérgio H. Ferreira

Morphine is one of the most prescribed and effective drugs used for the treatment of acute and chronic pain conditions. In addition to its central effects, morphine can also produce peripheral analgesia. However, the mechanisms underlying this peripheral action of morphine have not yet been fully elucidated. Here, we show that the peripheral antinociceptive effect of morphine is lost in neuronal nitric-oxide synthase null mice and that morphine induces the production of nitric oxide in primary nociceptive neurons. The activation of the nitric-oxide pathway by morphine was dependent on an initial stimulation of PI3Kγ/AKT protein kinase B (AKT) and culminated in increased activation of KATP channels. In the latter, this intracellular signaling pathway might cause a hyperpolarization of nociceptive neurons, and it is fundamental for the direct blockade of inflammatory pain by morphine. This understanding offers new targets for analgesic drug development.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Commensal microbiota is fundamental for the development of inflammatory pain

Flávio A. Amaral; Daniela Sachs; Vivian V. Costa; Caio T. Fagundes; Daniel Cisalpino; Thiago M. Cunha; Sérgio H. Ferreira; Fernando Q. Cunha; Tarcília Aparecida Silva; Jacques Robert Nicoli; Leda Quercia Vieira; Danielle G. Souza; Mauro M. Teixeira

The ability of an individual to sense pain is fundamental for its capacity to adapt to its environment and to avoid damage. The sensation of pain can be enhanced by acute or chronic inflammation. In the present study, we have investigated whether inflammatory pain, as measured by hypernociceptive responses, was modified in the absence of the microbiota. To this end, we evaluated mechanical nociceptive responses induced by a range of inflammatory stimuli in germ-free and conventional mice. Our experiments show that inflammatory hypernociception induced by carrageenan, lipopolysaccharide, TNF-α, IL-1β, and the chemokine CXCL1 was reduced in germ-free mice. In contrast, hypernociception induced by prostaglandins and dopamine was similar in germ-free or conventional mice. Reduction of hypernociception induced by carrageenan was associated with reduced tissue inflammation and could be reversed by reposition of the microbiota or systemic administration of lipopolysaccharide. Significantly, decreased hypernociception in germ-free mice was accompanied by enhanced IL-10 expression upon stimulation and could be reversed by treatment with an anti-IL-10 antibody. Therefore, these results show that contact with commensal microbiota is necessary for mice to develop inflammatory hypernociception. These findings implicate an important role of the interaction between the commensal microbiota and the host in favoring adaptation to environmental stresses, including those that cause pain.


Arthritis & Rheumatism | 2008

The chemokine receptors CXCR1/CXCR2 modulate antigen-induced arthritis by regulating adhesion of neutrophils to the synovial microvasculature.

Fernanda M. Coelho; Vanessa Pinho; Flávio A. Amaral; Daniela Sachs; Vivian V. Costa; David Henrique Rodrigues; Angélica T. Vieira; Tarcília Aparecida Silva; Daniele G. Souza; Riccardo Bertini; Antônio Lúcio Teixeira; Mauro M. Teixeira

OBJECTIVE The chemokine receptors CXCR1 and CXCR2 play a role in mediating neutrophil recruitment and neutrophil-dependent injury in several models of inflammation. We undertook this study to investigate the role of these receptors in mediating neutrophil adhesion, subsequent migration, and neutrophil-dependent hypernociception in a murine model of monarticular antigen-induced arthritis (AIA). METHODS AIA was induced by administration of antigen into the knee joint of previously immunized mice. Intravital microscopy studies were performed to assess leukocyte rolling and adhesion. Mechanical hypernociception was investigated using an electronic pressure meter. Neutrophil accumulation in the tissue was measured by counting neutrophils in the synovial cavity and assaying myeloperoxidase activity. Levels of tumor necrosis factor alpha (TNFalpha) and the chemokines CXCL1 and CXCL2 were quantified by enzyme-linked immunosorbent assay. Histologic analysis was performed to evaluate the severity of arthritis and leukocyte infiltration. RESULTS Antigen challenge in immunized mice induced production of TNFalpha, CXCL1, and CXCL2 and also resulted in neutrophil recruitment, leukocyte rolling and adhesion, and hypernociception. Treatment with reparixin or DF2162 (allosteric inhibitors of CXCR1/CXCR2) decreased neutrophil recruitment, an effect that was associated with marked inhibition of neutrophil adhesion. Drug treatment also inhibited TNFalpha production, hypernociception, and the overall severity of the disease in the tissue. CONCLUSION Blockade of CXCR1/CXCR2 receptors inhibits neutrophil recruitment by inhibiting the adhesion of neutrophils to synovial microvessels. As a consequence, there is decreased local cytokine production and reduced hypernociception, as well as ameloriation of overall disease in the tissue. These studies suggest a potential therapeutic role for the modulation of CXCR1/CXCR2 receptor signaling in the treatment of arthritis.


Arthritis & Rheumatism | 2012

NLRP3 inflammasome–mediated neutrophil recruitment and hypernociception depend on leukotriene B4 in a murine model of gout

Flávio A. Amaral; Vivian V. Costa; Lívia D. Tavares; Daniela Sachs; Fernanda M. Coelho; Caio T. Fagundes; Frederico M. Soriani; Tatiana N. Silveira; Larissa D. Cunha; Dario S. Zamboni; Valerie Quesniaux; Raphael S. Peres; Thiago M. Cunha; Fernando Q. Cunha; Bernhard Ryffel; Daniele G. Souza; Mauro M. Teixeira

OBJECTIVE Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)-derived leukotriene B(4) (LTB(4) ) in driving tissue inflammation and hypernociception in a murine model of gout. METHODS Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1β (IL-1β), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB(4) activity, cytokine (IL-1β, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. RESULTS Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophil-dependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1β/MyD88-dependent manner. LTB(4) was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1β production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB(4) after MSU crystal injection, and LTB(4) was relevant in the MSU crystal-induced maturation of IL-1β. Mechanistically, LTB(4) drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. CONCLUSION These results reveal the role of the NLRP3 inflammasome in mediating MSU crystal-induced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB(4) in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Essential role of platelet-activating factor receptor in the pathogenesis of Dengue virus infection

Danielle G. Souza; Caio T. Fagundes; Lirlandia P. Sousa; Flávio A. Amaral; Rafael S. de Souza; Adriano L.S. Souza; Erna Geessien Kroon; Daniela Sachs; Fernando Q. Cunha; Eugenij Bukin; Alena Atrasheuskaya; George Ignatyev; Mauro M. Teixeira

Severe dengue infection in humans causes a disease characterized by thrombocytopenia, increased levels of cytokines, increased vascular permeability, hemorrhage, and shock. Treatment is supportive. Activation of platelet-activating factor (PAF) receptor (PAFR) on endothelial cells and leukocytes induces increase in vascular permeability, hypotension, and production of cytokines. We hypothesized that activation of PAFR could account for the major systemic manifestations of dengue infection. Inoculation of adult mice with an adapted strain of Dengue virus caused a systemic disease, with several features of the infection in humans. In PAFR−/− mice, there was decreased thrombocytopenia, hemoconcentration, decreased systemic levels of cytokines, and delay of lethality, when compared with WT infected mice. Treatment with UK-74,505, an orally active PAFR antagonist, prevented the above-mentioned manifestations, as well as hypotension and increased vascular permeability, and decreased lethality, even when started 5 days after virus inoculation. Similar results were obtained with a distinct PAFR antagonist, PCA-4246. Despite decreased disease manifestation, viral loads were similar (PAFR−/−) or lower (PAFR antagonist) than in WT mice. Thus, activation of PAFR plays a major role in the pathogenesis of experimental dengue infection, and its blockade prevents more severe disease manifestation after infection with no increase in systemic viral titers, suggesting that there is no interference in the ability of the murine host to deal with the infection. PAFR antagonists are disease-modifying agents in experimental dengue infection.


Journal of Immunology | 2010

Anti-Inflammatory Effects of the Activation of the Angiotensin-(1–7) Receptor, Mas, in Experimental Models of Arthritis

Kátia Daniela da Silveira; Fernanda M. Coelho; Angélica T. Vieira; Daniela Sachs; Lívia Corrêa Barroso; Vivian V. Costa; Thales Lages Bicalho Bretas; Michael Bader; Lirlândia P. Sousa; Tarcília Aparecida Silva; Robson A.S. Santos; Ana Cristina Simões e Silva; Mauro M. Teixeira

Activation of the renin-angiotensin (Ang) system induces inflammation via interaction between Ang II and type 1 receptor on leukocytes. The relevance of the new arm of the renin-Ang system, namely Ang-converting enzyme-2/Ang-(1–7)/Mas receptor, for inflammatory responses is not known and was investigated in this study. For this purpose, two experimental models were used: Ag-induced arthritis (AIA) in mice and adjuvant-induced arthritis (AdIA) in rats. Male C57BL/6 wild-type or Mas−/− mice were subjected to AIA and treated with Ang-(1–7), the Mas agonist AVE 0991, or vehicle. AdIA was performed in female rats that were given AVE 0991 or vehicle. In wild-type mice, Mas protein is expressed in arthritic joints. Administration of AVE 0991 or Ang-(1–7) decreased AIA-induced neutrophil accumulation, hypernociception, and production of TNF-α, IL-1β, and CXCL1. Histopathological analysis showed significant reduction of inflammation. Mechanistically, AVE 0991 reduced leukocyte rolling and adhesion, even when given after Ag challenge. Mas−/− mice subjected to AIA developed slightly more pronounced inflammation, as observed by greater neutrophil accumulation and cytokine release. Administration of AVE 0991 was without effect in Mas−/− mice subjected to AIA. In rats, administration of AVE 0991 decreased edema, neutrophil accumulation, histopathological score, and production of IL-1β and CXCL1 induced by AdIA. Therefore, activation of Mas receptors decreases neutrophil influx and cytokine production and causes significant amelioration of arthritis in experimental models of arthritis in rats and mice. This approach might represent a novel therapeutic opportunity for arthritis.


Journal of Neuroimmunology | 2010

TNF-α, IL-1β, IL-6, and cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae

Tatiana Barichello; Ivonete dos Santos; Geovana D. Savi; Lutiana R. Simões; Tiago Silvestre; Clarissa M. Comim; Daniela Sachs; Mauro M. Teixeira; Antônio Lúcio Teixeira; João Quevedo

Bacterial meningitis caused by Streptococcus pneumoniae is associated with a significant mortality rate and persisting neurologic sequelae, including sensory-motor deficits, seizures, and impairment of learning and memory. The presence of proliferating bacteria within the subarachnoid and ventricular space compartments triggers an intense inflammatory host response at killing the invading microorganism. Proinflammatory mediators released in the process, including tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, and IL-6, were shown to contribute to the development of brain injury in bacterial meningitis. Thus, the aim of this study was to verify the levels of the TNF-alpha, IL-1beta, IL-6, and CINC-1 in the rat brain after pneumococcal meningitis. The animals underwent a magna cistern tap receiving either 10 microL of sterile saline as a placebo or an equivalent volume of a S. pneumoniae suspension at the concentration of 5x10(9) cfu/mL. The placebo group was killed immediately after the induction and the meningitis group at 0, 6, 12, 24, 48, and 96h after induction. The brains were removed followed by the isolation of the hippocampus and prefrontal cortex for determining TNF-alpha, IL-1beta, IL-6, and CINC-1 levels. In the hippocampus we found increased levels of the TNF-alpha only at 6h (p<0.01; F=3.777); CINC-1 levels increased at 6 and 24h (p<0.001; p<0.05; F=15.05); and IL-6 and IL-1beta levels were not altered. In the prefrontal cortex, the TNF-alpha levels were found to be increased only at 6h (p<0.05; F=4.921); IL-6 (p<0.05; F=11.69) and IL-1beta (p<0.001; F=132.0) levels were found to be increased only at 24h after meningitis induction; and CINC-1 levels were found to be increased at 6, 12, and 24h (p<0.01; p<0.01; p<0.01; F=16.86) after meningitis induction. Our data suggest that cytokine/chemokine levels can be putative biomarkers of brain damage in the first hours of the pneumococcal meningitis.


Neuroscience Letters | 2009

Tumor necrosis factor alpha (TNF-α) levels in the brain and cerebrospinal fluid after meningitis induced by Streptococcus pneumoniae

Tatiana Barichello; Ivonete dos Santos; Geovana D. Savi; Anelise F. Florentino; Cintia Silvestre; Clarissa M. Comim; Gustavo Feier; Daniela Sachs; Mauro M. Teixeira; Antônio Lúcio Teixeira; João Quevedo

Bacterial meningitis due to Streptococcus pneumoniae is associated with a significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The presence of proliferating bacteria within the subarachnoid and ventricular space compartments triggers an intense inflammatory host response at killing the invading microorganism. Proinflammatory mediators released in the process include tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, IL-6. TNF-alpha have several effects, including cytotoxicity, antiviral activity, transcription factor activation, and immune response regulation. Thus, the aim of this study was to verify the levels of the TNF-alpha after pneumococcal meningitis in male Wistar rats. The animals underwent a magna cistern tap receiving either 10 microL sterile saline as a placebo or an equivalent volume of a S. pneumoniae suspension at the concentration 5 x 10(9)cfu/mL. The animals were killed at 0, 6, 12, 24, 48 and 96 h after induction. The brain was removed and hippocampus, cortex, prefrontal and cerebrospinal fluid (CSF) were isolated and used for the determination of TNF-alpha levels. We found an increase in TNF-alpha levels at 6h after induction of the meningitis in the hippocampus (p<0.01), frontal cortex (p<0.05), and cerebrospinal fluid (p<0.001).There was no alteration in the cortex. Our data suggest that TNF-alpha is involved in the pathophysiology of the pneumococcal meningitis and could be investigated as a putative biomarker for brain damage in the first hours.


British Journal of Pharmacology | 2011

Cooperative role of tumour necrosis factor‐α, interleukin‐1β and neutrophils in a novel behavioural model that concomitantly demonstrates articular inflammation and hypernociception in mice

Daniela Sachs; Fernanda M. Coelho; Vivian V. Costa; Fernando Lopes; Vanessa Pinho; Flávio A. Amaral; Tarcília Aparecida Silva; Antônio Lúcio Teixeira; Daniele G. Souza; Mauro M. Teixeira

BACKGROUND AND PURPOSE Chronic joint inflammation and pain are the hallmarks of disease in patients with inflammatory arthritis, notably rheumatoid arthritis. The aim of the present study was to investigate the relative contribution of tumour necrosis factor (TNF)‐α, interleukin (IL)‐1β and neutrophil influx for joint inflammation and nociception in a novel murine model of antigen‐induced arthritis (AIA).


Frontiers in Immunology | 2012

Glycosaminoglycan analogs as a novel anti-inflammatory strategy

India C. Severin; Adriano Soares; Jennifer Hantson; Mauro M. Teixeira; Daniela Sachs; Delphine Valognes; Alexander Scheer; Matthias Schwarz; Timothy N. C. Wells; Amanda E. I. Proudfoot; Jeffrey Shaw

Heparin, a glycosaminoglycan (GAG), has both anti-inflammatory and anti-coagulant properties. The clinical use of heparin against inflammation, however, has been limited by concerns about increased bleeding. While the anti-coagulant activity of heparin is well understood, its anti-inflammatory properties are less so. Heparin is known to bind to certain cytokines, including chemokines, small proteins which mediate inflammation through their control of leukocyte migration and activation. Molecules which can interrupt the chemokine-GAG interaction without inhibiting coagulation could therefore, represent a new class of anti-inflammatory agents. In the present study, two approaches were undertaken, both focusing on the heparin-chemokine relationship. In the first, a structure based strategy was used: after an initial screening of potential small molecule binders using protein NMR on a target chemokine, binding molecules were optimized through structure-based design. In the second approach, commercially available short oligosaccharides were polysulfated. In vitro, these molecules prevented chemokine-GAG binding and chemokine receptor activation without disrupting coagulation. However, in vivo, these compounds caused variable results in a murine peritoneal recruitment assay, with a general increase of cell recruitment. In more disease specific models, such as antigen-induced arthritis and delayed-type hypersensitivity, an overall decrease in inflammation was noted, suggesting that the primary anti-inflammatory effect may also involve factors beyond the chemokine system.

Collaboration


Dive into the Daniela Sachs's collaboration.

Top Co-Authors

Avatar

Mauro M. Teixeira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Antônio Lúcio Teixeira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Flávio A. Amaral

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Vivian V. Costa

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Fernanda M. Coelho

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Tarcília Aparecida Silva

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Daniele G. Souza

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caio T. Fagundes

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge