Daniela Schmidmair
University of Innsbruck
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Schmidmair.
Journal of Physical Chemistry C | 2014
Michaela Kogler; Eva-Maria Köck; Thomas Bielz; Kristian Pfaller; Bernhard Klötzer; Daniela Schmidmair; Lukas Perfler; Simon Penner
The surface reactivity of Y2O3, YSZ, and ZrO2 polycrystalline powder samples toward H2 has been comparatively studied by a pool of complementary experimental techniques, comprising volumetric methods (temperature-programmed volumetric adsorption/oxidation and thermal desorption spectrometry), spectroscopic techniques (in situ electric impedance and in situ Fourier-transform infrared spectroscopy), and eventually structural characterization methods (X-ray diffraction and scanning electron microscopy). Reduction has been observed on all three oxides to most likely follow a surface or near-surface-limited mechanism involving removal of surface OH-groups and associated formation of water without formation of a significant number of anionic oxygen vacancies. Partly reversible adsorption of H2 was proven on the basis of molecular H2 desorption. Dictated by the specific hydrophilicity of the oxide, readsorption of water eventually takes place. The inference of this surface-restricted mechanism is further corroborated by the fact that no bulk structural and/or morphological changes were observed upon reduction even at the highest reduction temperatures (1173 K). We anticipate relevant implications for the use of especially YSZ in fuel cell research, since in particular the chemical state and structure of the surface under typical reducing high-temperature conditions affects the operation of the entire cell.
Inorganic Chemistry | 2014
Michaela Kogler; Eva-Maria Köck; Stefan Vanicek; Daniela Schmidmair; Thomas Götsch; Michael Stöger-Pollach; Clivia Hejny; Bernhard Klötzer; Simon Penner
The kinetic stability of pure and yttrium-doped tetragonal zirconia (ZrO2) polymorphs prepared via a pathway involving decomposition of pure zirconium and zirconium + yttrium isopropoxide is reported. Following this preparation routine, high surface area, pure, and structurally stable polymorphic modifications of pure and Y-doped tetragonal zirconia are obtained in a fast and reproducible way. Combined analytical high-resolution in situ transmission electron microscopy, high-temperature X-ray diffraction, and chemical and thermogravimetric analyses reveals that the thermal stability of the pure tetragonal ZrO2 structure is very much dominated by kinetic effects. Tetragonal ZrO2 crystallizes at 400 °C from an amorphous ZrO2 precursor state and persists in the further substantial transformation into the thermodynamically more stable monoclinic modification at higher temperatures at fast heating rates. Lower heating rates favor the formation of an increasing amount of monoclinic phase in the product mixture, especially in the temperature region near 600 °C and during/after recooling. If the heat treatment is restricted to 400 °C even under moist conditions, the tetragonal phase is permanently stable, regardless of the heating or cooling rate and, as such, can be used as pure catalyst support. In contrast, the corresponding Y-doped tetragonal ZrO2 phase retains its structure independent of the heating or cooling rate or reaction environment. Pure tetragonal ZrO2 can now be obtained in a structurally stable form, allowing its structural, chemical, or catalytic characterization without in-parallel triggering of unwanted phase transformations, at least if the annealing or reaction temperature is restricted to T ≤ 400 °C.
Inorganic Chemistry | 2015
Lukas Perfler; Volker Kahlenberg; Christoph Wikete; Daniela Schmidmair; Martina Tribus; Reinhard Kaindl
Colorless single crystals, as well as polycrystalline samples of TiTa2O7 and TiNb2O7, were grown directly from the melt and prepared by solid-state reactions, respectively, at various temperatures between 1598 K and 1983 K. The chemical composition of the crystals was confirmed by wavelength-dispersive X-ray spectroscopy, and the crystal structures were determined using single-crystal X-ray diffraction. Structural investigations of the isostructural compounds resulted in the following basic crystallographic data: monoclinic symmetry, space group I2/m (No. 12), a = 17.6624(12) Å, b = 3.8012(3) Å, c = 11.8290(9) Å, β = 95.135(7)°, V = 790.99(10) Å(3) for TiTa2O7 and a = 17.6719(13) Å, b = 3.8006(2) Å, c = 11.8924(9) Å, β = 95.295(7)°, V = 795.33(10) Å(3), respectively, for TiNb2O7, Z = 6. Rietveld refinement analyses of the powder X-ray diffraction patterns and Raman spectroscopy were carried out to complement the structural investigations. In addition, in situ high-temperature powder X-ray diffraction experiments over the temperature range of 323-1323 K enabled the study of the thermal expansion tensors of TiTa2O7 and TiNb2O7. To determine the hardness (H), and elastic moduli (E) of the chemical compounds, nanoindentation experiments have been performed with a Berkovich diamond indenter tip. Analyses of the load-displacement curves resulted in a hardness of H = 9.0 ± 0.5 GPa and a reduced elastic modulus of Er = 170 ± 7 GPa for TiTa2O7. TiNb2O7 showed a slightly lower hardness of H = 8.7 ± 0.3 GPa and a reduced elastic modulus of Er = 159 ± 4 GPa. Spectroscopic ellipsometry of the polished specimens was employed for the determination of the optical constants n and k. TiNb2O7 as well as TiTa2O7 exhibit a very high average refractive index of nD = 2.37 and nD = 2.29, respectively, at λ = 589 nm, similar to that of diamond (nD = 2.42).
Chemcatchem | 2016
Ramona Thalinger; Thomas Götsch; Chen Zhuo; Walid Hetaba; Wolfgang Wallisch; Michael Stöger-Pollach; Daniela Schmidmair; Bernhard Klötzer; Simon Penner
Metal–support interaction in rhodium–perovskite systems was studied using LSF (La0.6Sr0.4FeO3−δ) and STF (SrTi0.7Fe0.3O3−δ) supports to disentangle different manifestations of strong or reactive metal–support interaction. Electron microscopy and catalytic characterization in methane steam reforming/CO2 methanation reveal that reduction in hydrogen at 673 K and 873 K causes different extents of Fe exsolution. Depending on the perovskite reducibility, Fe–Rh alloy particles are observed. No signs of strong metal–support interaction (i.e., encapsulation of metal particles) by reduced oxide species were observed. As re‐oxidation in oxygen at 873 K did not fully restore the initial structures, the interaction between Rh and the perovskites manifests itself in irreversible alloy formation. Catalytic effects are the suppression of methane reactivity with increasing prereduction temperature. The results show the limits of the strong metal–support interaction concept in complex metal–oxide systems.
Journal of Physical Chemistry C | 2015
Ramona Thalinger; Alexander K. Opitz; Sandra Kogler; Marc Heggen; Daniel G. Stroppa; Daniela Schmidmair; R. J. Tappert; Jürgen Fleig; Bernhard Klötzer; Simon Penner
Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities.
Chemcatchem | 2016
Lukas Mayr; Bernhard Klötzer; Daniela Schmidmair; Norbert Köpfle; Johannes Bernardi; Sabine Schwarz; Marc Armbrüster; Simon Penner
A bimetallic Cu/Cu51Zr14 precatalyst, activated in situ, for hydrogen generation from methanol and water provides very high CO2 selectivity (>99.9 %) and high H2 yields. Referenced to the geometric surface area of our model surface, higher activity of at least one order of magnitude was observed in comparison to supported Cu/ZrO2 and Cu/ZnO/ZrO2 catalysts. Evolution of structural activation monitored by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and electron microscopy indicates transformation of the bimetallic Cu/Cu51Zr14 precatalyst into an active, selective, and self‐stabilizing state with coexistence of dispersed Cu and partially hydroxylated tetragonal ZrO2. The outstanding performance is assigned to the presence of a high interface‐site concentration following in situ decomposition of the intermetallic compound. These active sites result from the cooperation of Cu, responsible for methanol activation, and tetragonal ZrO2, which activates the water by surface hydroxylation.
Mineralogical Magazine | 2014
Daniela Schmidmair; Volker Kahlenberg; Lukas Perfler; Daniel M. Többens
Abstract Hydrothermal treatment of quartz with 2 M K2CO3 solutions at 623 K and 1 kbar resulted in the formation of single crystals of the monoclinic polymorph of potassium hydrogen disilicate (KHSi2O5 or KSi2O4(OH)). Basic crystallographic data of this so-called phase I at room conditions are as follows: space group C2/m, a = 14.5895(10) Å, b = 8.2992(3) Å, c = 9.6866(7) Å, b = 122.756(10)°, V = 986.36(10) Å3, Z = 8. The structure was determined by direct methods and refined to a residual of R(|F|) = 0.0224 for 892 independent observed reflections with I > 2σ(I). The compound belongs to the group of chain silicates. It is based on crankshaft-like vierer double-chains running parallel to [010]. The H atoms are associated with silanol groups. Hydrogen bonding between neighbouring double-chains results in the formation of ~5 Å wide slabs. The three crystallographically independent K cations with six to eight O ligands provide linkage (1) between the chains of a single slab or (2) between adjacent slabs. Structural investigations have been supplemented by micro-Raman spectroscopy. The interpretation of the spectroscopic data including the allocation of the bands to certain vibrational species has been aided by DFT calculations.
Zeitschrift Fur Kristallographie | 2016
Predrag Dabić; Volker Kahlenberg; Daniela Schmidmair; A. Kremenović; Predrag Vulić
Abstract Single-crystal growth experiments in the system CsF-Er2O3-SiO2 resulted in the simultaneous crystallization of two chemically related compounds within the same run: Cs2Er[Si6O14]F (phase I) and Cs2Er[Si4O10]F (phase II). They represent the first examples for cesium erbium silicates containing fluorine. Basic crystallographic data are – phase I: space group Cmca, a=17.2556(6) Å, b=24.6565(7) Å, c=14.4735(5) Å, V=6157.9(3) Å3, Z=16; phase II: space group Pnma, a=22.3748(7) Å, b=8.8390(2) Å, c=11.9710(4) Å, V=2367.5(1) Å3, Z=8. The structures were determined by direct methods and refined to residuals of R(|F|)=0.0229 for 2920 (phase I) and 0.0231 for 2314 (phase II) independent observed reflections with I>2σ(I). The structure of phase I represents a previously unknown structure type with a three dimensional tetrahedral framework consisting of Q3 and Q4 groups in the ratio 2:1. Basic building units of the network are unbranched sechser single-chains running parallel to [001]. The network can be conveniently built up from the condensation of tetrahedral layers parallel to (010) or (100), respectively. The crystal structure of phase II can be classified as a tubular or columnar chain silicate indicating that the backbones of the structure are multiple chains of silicate tetrahedra. This structure is isotypic to a Cs2Y[Si4O10]F, a compound that has been characterized previously. Alternatively, both compounds can be described as mixed octahedral-tetrahedral frameworks, which can be classified according to their polyhedral microensembles. A topological analysis of both nets is presented.
Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry | 2016
Clivia Hejny; Volker Kahlenberg; Daniela Schmidmair; Predrag Dabić
Single-crystal X-ray diffraction of Cs3ScSi6O15 shows the presence of main reflections and satellite reflections up to the fourth order along the c* direction. The (3+1)-dimensional incommensurately modulated structure was solved in superspace group X3m1(00gamma)0s0 [a = 13.861 (1), c = 6.992 (1) Å, V = 1163.4 (2) Å(3)] with a modulation wavevector q = 0.14153 (2)c*. Refinement of three modulation waves for positional and anisotropic displacement parameter values for all atoms converged to R(obs) values for all, main and satellite reflections of first, second and third order of 0.0200, 0.0166, 0.0181, 0.0214 and 0.0303, respectively. Cs3ScSi6O15 forms a mixed tetrahedral-octahedral framework with prominent six-membered rings of [SiO4]-tetrahedra interconnected by [ScO6]-octahedra. Apart from Sc, all atoms are strongly affected by positional modulation with maximum atomic displacements of up to 0.93 Å causing rigid polyhedral arrangements to perform tilt and twist movements relative to each other, such as a rotation of the Sc-octahedra around the 3-axis by over 38°. Cs has an irregular coordination environment; however, considering distances up to 3.5 Å, the bond-valence sum changes by no more than 0.02 as a function of t and thus overall kept at a level of ca 1.075.
Mineralogical Magazine | 2015
Daniela Schmidmair; Volker Kahlenberg; Daniel M. Többens; Herwig Schottenberger; Jochem de Wit; Ulrich J. Griesser
Abstract The high-temperature- and moisture-dependent behaviour of synthetic kanemite (NaSi2O4(OH)·3H2O or SKS-10) has been studied by in situ powder X-ray diffraction. Heating experiments in the range between ambient temperatures and 250°C confirm earlier investigations that the dehydration of kanemite occurs in two steps. According to our results the two different reactions start at ~30 and 75°C. The dehydration products have the following compositions: NaSi2O4(OH)·H2O (monohydrate) and NaSi2O4(OH), respectively. The crystal structures of both phases have been solved at ambient conditions ab initio from laboratory powder diffraction data using samples that have been carefully dehydrated at 60 and 150°C, respectively, and refined subsequently by the Rietveld method. Basic crystallographic data are as follows: NaSi2O4(OH)·H2O: orthorhombic, space group Pna21, a = 7.2019(1), b = 15.3252(2), c = 4.8869(1) Å, V = 539.37(1) Å3, Z = 4; NaSi2O4(OH): monoclinic, space group P21, a = 6.3873(1), b = 4.8876(1), c = 7.1936(1) Å, b = 93.36(1)°, V = 224.19(1) Å3, Z = 2. Both compounds belong to the group of single-layer silicates based on Si2O4(OH) sheets. The sodium cations are located between the tetrahedral sheets and are surrounded by oxygen atoms from silicate anions and/or water molecules. Depending on the dehydration step the coordination numbers of the alkali ions vary between six (kanemite) and five (NaSi2O4(OH)). Kanemite and its two dehydration products show structural similarities which are discussed in detail. Moisture-dependent diffraction studies at ambient temperatures indicate that kanemite is stable between 10% and at least 90% relative humidity. Below the lower threshold a transformation to the monohydrate phase was observed. Dehydration and rehydration as a function of humidity is reversible. However, this process is combined with a significant loss of crystallinity of the samples.