Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Sint is active.

Publication


Featured researches published by Daniela Sint.


Methods in Ecology and Evolution | 2012

Advances in multiplex PCR: balancing primer efficiencies and improving detection success

Daniela Sint; Lorna Raso; Michael Traugott

1. Multiplex PCR is a valuable tool in many biological studies but it is a multifaceted procedure that has to be planned and optimised thoroughly to achieve robust and meaningful results. In particular, primer concentrations have to be adjusted to assure an even amplification of all targeted DNA fragments. Until now, total DNA extracts were used for balancing primer efficiencies; however, the applicability for comparisons between taxa or different multiple-copy genes was limited owing to the unknown number of template molecules present per total DNA. 2. Based on a multiplex system developed to track trophic interactions in high Alpine arthropods, we demonstrate a fast and easy way of generating standardised DNA templates. These were then used to balance the amplification success for the different targets and to subsequently determine the sensitivity of each primer pair in the multiplex PCR. 3. In the current multiplex assay, this approach led to an even amplification success for all seven targeted DNA fragments. Using this balanced multiplex PCR, methodological bias owing to variation in primer efficiency will be avoided when analysing field-derived samples. 4. The approach outlined here allows comparing multiplex PCR sensitivity, independent of the investigated species, genome size or the targeted genes. The application of standardised DNA templates not only makes it possible to optimise primer efficiency within a given multiplex PCR, but it also offers to adjust and/or to compare the sensitivity between different assays. Along with other factors that influence the success of multiplex reactions, and which we discuss here in relation to the presented detection system, the adoption of this approach will allow for direct comparison of multiplex PCR data between systems and studies, enhancing the utility of this assay type.


Bulletin of Entomological Research | 2012

Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation

Michael Traugott; James R. Bell; Lorna Raso; Daniela Sint; William Oliver Christian Symondson

Generalist predators and parasitoids are considered to be important regulators of aphids. The former not only feed on these pests, but might also consume parasitoids at all stages of development. This direct or coincidental interference affects the natural control of aphids, the scale of which is largely unknown, and it has rarely been examined under natural conditions. Here, molecular diagnostics were used to track trophic interactions in an aphid-parasitoid-generalist predator community during the build-up of a cereal aphid population. We found that generalist predators, principally carabid and staphylinid beetles as well as linyphiid spiders, had strong trophic links to both parasitoids and aphids. Remarkably, more than 50% of the parasitoid DNA detected in predators stems from direct predation on adult parasitoids. The data also suggest that coincidental intraguild predation is common too. Generalist predators, hence, disrupt parasitoid aphid control, although the levels at which the predators feed on pests and parasitoids seem to vary significantly between predator taxa. Our results suggest that taxon-specific trophic interactions between natural enemies need to be considered to obtain a more complete understanding of the route to effective conservation biological control.


Molecular Ecology Resources | 2011

Optimizing methods for PCR-based analysis of predation

Daniela Sint; Lorna Raso; Rüdiger Kaufmann; Michael Traugott

Molecular methods have become an important tool for studying feeding interactions under natural conditions. Despite their growing importance, many methodological aspects have not yet been evaluated but need to be considered to fully exploit the potential of this approach. Using feeding experiments with high alpine carabid beetles and lycosid spiders, we investigated how PCR annealing temperature affects prey DNA detection success and how post‐PCR visualization methods differ in their sensitivity. Moreover, the replicability of prey DNA detection among individual PCR assays was tested using beetles and spiders that had digested their prey for extended times postfeeding. By screening all predators for three differently sized prey DNA fragments (range 116–612 bp), we found that only in the longest PCR product, a marked decrease in prey detection success occurred. Lowering maximum annealing temperatures by 4 °C resulted in significantly increased prey DNA detection rates in both predator taxa. Among the three post‐PCR visualization methods, an eightfold difference in sensitivity was observed. Repeated screening of predators increased the total number of samples scoring positive, although the proportion of samples testing positive did not vary significantly between different PCRs. The present findings demonstrate that assay sensitivity, in combination with other methodological factors, plays a crucial role to obtain robust trophic interaction data. Future work employing molecular prey detection should thus consider and minimize the methodologically induced variation that would also allow for better cross‐study comparisons.


Molecular Ecology | 2014

Intraguild predation in pioneer predator communities of alpine glacier forelands

Lorna Raso; Daniela Sint; Rebecca Mayer; Simon Plangg; Thomas Recheis; Silvia Brunner; Rüdiger Kaufmann; Michael Traugott

Pioneer communities establishing themselves in the barren terrain in front of glacier forelands consist principally of predator species such as carabid beetles and lycosid spiders. The fact that so many different predators can co‐inhabit an area with no apparent primary production was initially explained by allochthonous material deposited in these forelands. However, whether these populations can be sustained on allochthonous material alone is questionable and recent studies point towards this assumption to be flawed. Intraguild predation (IGP) might play an important role in these pioneer predator assemblages, especially in the very early successional stages where other prey is scarce. Here, we investigated IGP between the main predator species and their consumption of Collembola, an important autochthonous alternative prey, within a glacier foreland in the Ötztal (Austrian Alps). Multiplex PCR and stable isotope analysis were used to characterize the trophic niches in an early and late pioneer stage over 2 years. Results showed that intraguild prey was consumed by all invertebrate predators, particularly the larger carabid species. Contrary to our initial hypothesis, the DNA detection frequency of IGP prey was not significantly higher in early than in late pioneer stage, which was corroborated by the stable isotope analysis. Collembola were the most frequently detected prey in all of the predators, and the overall prey DNA detection patterns were consistent between years. Our findings show that IGP appears as a constant in these pioneer predator communities and that it remains unaffected by successional changes.


Journal of Pest Science | 2016

Food Web Designer: a flexible tool to visualize interaction networks

Daniela Sint; Michael Traugott

Species are embedded in complex networks of ecological interactions and assessing these networks provides a powerful approach to understand what the consequences of these interactions are for ecosystem functioning and services. This is mandatory to develop and evaluate strategies for the management and control of pests. Graphical representations of networks can help recognize patterns that might be overlooked otherwise. However, there is a lack of software which allows visualizing these complex interaction networks. Food Web Designer is a stand-alone, highly flexible and user friendly software tool to quantitatively visualize trophic and other types of bipartite and tripartite interaction networks. It is offered free of charge for use on Microsoft Windows platforms. Food Web Designer is easy to use without the need to learn a specific syntax due to its graphical user interface. Up to three (trophic) levels can be connected using links cascading from or pointing towards the taxa within each level to illustrate top-down and bottom-up connections. Link width/strength and abundance of taxa can be quantified, allowing generating fully quantitative networks. Network datasets can be imported, saved for later adjustment and the interaction webs can be exported as pictures for graphical display in different file formats. We show how Food Web Designer can be used to draw predator–prey and host-parasitoid food webs, demonstrating that this software is a simple and straightforward tool to graphically display interaction networks for assessing pest control or any other type of interaction in both managed and natural ecosystems from an ecological network perspective.


Frontiers in Zoology | 2015

Sparing spiders: faeces as a non-invasive source of DNA

Daniela Sint; Isabella Thurner; Ruediger Kaufmann; Michael Traugott

IntroductionSpiders are important arthropod predators in many terrestrial ecosystems, and molecular tools have boosted our ability to investigate this taxon, which can be difficult to study with conventional methods. Nonetheless, it has typically been necessary to kill spiders to obtain their DNA for molecular applications, especially when studying their diet.ResultsWe successfully tested the novel approach of employing spider faeces as a non-invasive source of DNA for species identification and diet analysis. Although the overall concentration of DNA in the samples was very low, consumer DNA, suitable for species identification, was amplified from 84% of the faecal pellets collected from lycosid spiders. Moreover, the most important prey types detected in the gut content of the lycosids were also amplified from the faecal samples.ConclusionThe ability to amplify DNA from spider faeces with specific and general primers suggests that this sample type can be used for diagnostic PCR and sequence-based species and prey identification such as DNA barcoding and next generation sequencing, respectively. These findings demonstrate that faeces provide a non-invasive alternative to full-body DNA extracts for molecular studies on spiders when killing or injuring the animal is not an option.


Bulletin of Entomological Research | 2015

Detection of seed DNA in regurgitates of granivorous carabid beetles.

Corinna Wallinger; Daniela Sint; F. Baier; C. Schmid; Rebecca Mayer; Michael Traugott

Granivory can play a pivotal role in influencing regeneration, colonization as well as abundance and distribution of plants. Due to their high abundance, nutrient content and longevity, seeds are an important food source for many animals. Among insects, carabid beetles consume substantial numbers of seeds and are thought to be responsible for a significant amount of seed loss. However, the processes that govern which seeds are eaten and are therefore prevented from entering the seedbank are poorly understood. Here, we assess if DNA-based diet analysis allows tracking the consumption of seeds by carabids. Adult individuals of Harpalus rufipes were fed with seeds of Taraxacum officinale and Lolium perenne allowing them to digest for up to 3 days. Regurgitates were tested for the DNA of ingested seeds at eight different time points post-feeding using general and species-specific plant primers. The detection of seed DNA decreased with digestion time for both seed species, albeit in a species-specific manner. Significant differences in overall DNA detection rates were found with the general plant primers but not with the species-specific primers. This can have implications for the interpretation of trophic data derived from next-generation sequencing, which is based on the application of general primers. Our findings demonstrate that seed predation by carabids can be tracked, molecularly, on a species-specific level, providing a new way to unravel the mechanisms underlying in-field diet choice in granivores.


PLOS ONE | 2014

Group-Specific Multiplex PCR Detection Systems for the Identification of Flying Insect Prey

Daniela Sint; Bettina Niederklapfer; Ruediger Kaufmann; Michael Traugott

The applicability of species-specific primers to study feeding interactions is restricted to those ecosystems where the targeted prey species occur. Therefore, group-specific primer pairs, targeting higher taxonomic levels, are often desired to investigate interactions in a range of habitats that do not share the same species but the same groups of prey. Such primers are also valuable to study the diet of generalist predators when next generation sequencing approaches cannot be applied beneficially. Moreover, due to the large range of prey consumed by generalists, it is impossible to investigate the breadth of their diet with species-specific primers, even if multiplexing them. However, only few group-specific primers are available to date and important groups of prey such as flying insects have rarely been targeted. Our aim was to fill this gap and develop group-specific primers suitable to detect and identify the DNA of common taxa of flying insects. The primers were combined in two multiplex PCR systems, which allow a time- and cost-effective screening of samples for DNA of the dipteran subsection Calyptratae (including Anthomyiidae, Calliphoridae, Muscidae), other common dipteran families (Phoridae, Syrphidae, Bibionidae, Chironomidae, Sciaridae, Tipulidae), three orders of flying insects (Hymenoptera, Lepidoptera, Plecoptera) and coniferous aphids within the genus Cinara. The two PCR assays were highly specific and sensitive and their suitability to detect prey was confirmed by testing field-collected dietary samples from arthropods and vertebrates. The PCR assays presented here allow targeting prey at higher taxonomic levels such as family or order and therefore improve our ability to assess (trophic) interactions with flying insects in terrestrial and aquatic habitats.


PLOS ONE | 2014

Molecular Identification of Adult and Juvenile Linyphiid and Theridiid Spiders in Alpine Glacier Foreland Communities

Lorna Raso; Daniela Sint; Alexander Rief; Rüdiger Kaufmann; Michael Traugott

In glacier forelands spiders constitute a large proportion of the invertebrate community. Therefore, it is important to be able to determine the species that can be found in these areas. Linyphiid and theridiid spider identification is currently not possible in juvenile specimens using traditional morphological based methods, however, a large proportion of the population in these areas are usually juveniles. Molecular methods permit identification of species at different life stages, making juvenile identification possible. In this study we tested a molecular tool to identify the 10 most common species of Linyphiidae and Theridiidae found in three glacier foreland communities of the Austrian Alps. Two multiplex PCR systems were developed and over 90% of the 753 field-collected spiders were identified successfully. The species targeted were found to be common in all three valleys during the summer of 2010. A comparison between the molecular and morphological data showed that although there was a slight difference in the results, the overall outcome was the same independently of the identification method used. We believe the quick and reliable identification of the spiders via the multiplex PCR assays developed here will aid the study of these families in Alpine habitats.


Wasserwirtschaft | 2018

Quantifizierung von Fischbeständen mittels eDNA in alpinen Fließgewässern

Bettina Thalinger; Daniela Sint; Christiane Zeisler; Dominik Kirschner; Michael Traugott; Christian Moritz; Richard Schwarzenberger

Umwelt-DNA (eDNA) erlaubt das Vorkommen von Fischarten in Gewässern hochsensitiv und schnell zu bestimmen. Inwiefern sich dieser Ansatz jedoch für eine Quanti zierung von Fischbeständen, insbesondere für alpine Fließgewässer, eignet, ist noch weitgehend unbekannt. Der Vergleich zwischen klassischer Bestandserhebung mittels Elektrobe schung und eDNA-Analysen in zwei alpinen Fließgewässern zeigt eine gute Korrelation zwischen Fischbestand sowie eDNA-Signalstärke und lässt das Potenzial von eDNA zur Quanti zierung von Fischbeständen erkennen.

Collaboration


Dive into the Daniela Sint's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorna Raso

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita Juen

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge