Daniela Tardito
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Tardito.
PLOS ONE | 2010
Laura Musazzi; Marco Milanese; Pasqualina Farisello; Simona Zappettini; Daniela Tardito; V.S. Barbiero; Tiziana Bonifacino; Alessandra Mallei; Pietro Baldelli; Giorgio Racagni; Maurizio Raiteri; Fabio Benfenati; Giambattista Bonanno; Maurizio Popoli
Background Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release. Methodology/Findings Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine) and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated), and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486). On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats). Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability. Conclusions/Significance Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress, shown here for the first time, could be related to the therapeutic action of these drugs.
Neuropsychopharmacology | 2004
Ettore Tiraboschi; Daniela Tardito; Jiro Kasahara; Stefania Moraschi; Paolo Pruneri; Massimo Gennarelli; Giorgio Racagni; Maurizio Popoli
Regulation of gene expression is purported as a major component in the long-term action of antidepressants. The transcription factor cAMP-response element-binding protein (CREB) is activated by chronic antidepressant treatments, although a number of studies reported different effects on CREB, depending on drug types used and brain areas investigated. Furthermore, little is known as to what signaling cascades are responsible for CREB activation, although cAMP-protein kinase A (PKA) cascade was suggested to be a central player. We investigated how different drugs (fluoxetine (FLX), desipramine (DMI), reboxetine (RBX)) affect CREB expression and phosphorylation of Ser133 in the hippocampus and prefrontal/frontal cortex (PFCX). Acute treatments did not induce changes in these mechanisms. Chronic FLX increased nuclear phospho-CREB (pCREB) far more markedly than pronoradrenergic drugs, particularly in PFCX. We investigated the function of the main signaling cascades that were shown to phosphorylate and regulate CREB. PKA did not seem to account for the selective increase of pCREB induced by FLX. All drug treatments markedly increased the enzymatic activity of nuclear Ca2+/calmodulin (CaM) kinase IV (CaMKIV), a major neuronal CREB kinase, in PFCX. Activation of this kinase was due to increased phosphorylation of the activatory residue Thr196, with no major changes in the expression levels of α- and β-CaM kinase kinase, enzymes that phosphorylate CaMKIV. Again in PFCX, FLX selectively increased the expression level of MAP kinases Erk1/2, without affecting their phosphorylation. Our results show that FLX exerts a more marked effect on CREB phosphorylation and suggest that CaMKIV and MAP kinase cascades are involved in this effect.
European Neuropsychopharmacology | 2013
Luisella Bocchio-Chiavetto; Elisabetta Maffioletti; Paola Bettinsoli; Caterina Giovannini; Stefano Bignotti; Daniela Tardito; Dario Corrada; Luciano Milanesi; Massimo Gennarelli
MicroRNAs (miRNAs) are potent modulators of protein expression that play key roles in brain pathways regulating neurogenesis and synaptic plasticity. These small RNAs may be critical for the pathophysiology of mental disorders and may influence the effectiveness of psychotropic drugs. To investigate the possible involvement of miRNAs in the mechanism of action of antidepressants (AD), we conducted a whole-miRNome quantitative analysis with qRT-PCR of the changes in the blood of 10 depressed subjects after 12 weeks of treatment with escitalopram. Thirty miRNAs were differentially expressed after the AD treatment: 28 miRNAs were up-regulated, and 2 miRNAs were strongly down-regulated. miRNA target gene prediction and functional annotation analysis showed that there was a significant enrichment in several pathways associated with neuronal brain function (such as neuroactive ligand-receptor interaction, axon guidance, long-term potentiation and depression), supporting the hypothesis that the differentially regulated miRNAs may be involved in the AD mechanism.
Biological Psychiatry | 2006
Alessandro Barbon; Maurizio Popoli; Luca La Via; Stefania Moraschi; Ivan Vallini; Daniela Tardito; Ettore Tiraboschi; Laura Musazzi; Roberto Giambelli; Massimo Gennarelli; Giorgio Racagni; Sergio Barlati
BACKGROUND Several reports have shown that the glutamatergic system is involved in both the pathogenesis of affective and stress-related disorders and in the action of antidepressant drugs. In particular, antidepressant treatment was shown to modulate expression and function of ionotropic glutamate receptors, to inhibit glutamate release and to restore synaptic plasticity impaired by stress. METHODS We analyzed the mRNA expression and RNA editing of alpha-amino-propionic-acid (AMPA) and kainate (KA) receptor subunits, in the pre-frontal/frontal cortex (P/FC) and hippocampus (HI) of rats chronically treated with three different drugs: the selective serotonin (5-HT) reuptake inhibitor fluoxetine, the selective noradrenaline (NA) reuptake inhibitor reboxetine and the tricyclic antidepressant desipramine. RESULTS Our data showed that fluoxetine and desipramine exerted moderate but selective effects on glutamate receptor expression and editing, while reboxetine appeared to be the drug that affects glutamate receptors (GluR) most. The most consistent effect, observed with pronoradrenergic drugs (desipramine and reboxetine), was a decrease of GluR3 expression both in P/FC and HI. Interestingly, in HI, the same drugs also decreased the editing levels of either the flip (desipramine) or flop (reboxetine) form of GluR3. CONCLUSIONS Overall, these results point to specific and regionally discrete changes in the expression and editing level of glutamate receptors and, in particular, to a selective reduction of conductance for GluR3-containing receptors following treatment with antidepressant drugs. These data support the hypothesis that changes in glutamate neurotransmission are involved in the therapeutic effects induced by these drugs.
World Journal of Biological Psychiatry | 2011
Giorgio Racagni; Marco Riva; Raffaella Molteni; Laura Musazzi; Francesca Calabrese; Maurizio Popoli; Daniela Tardito
Abstract Objectives. The association between depression and circadian rhythm disturbances is well established and successful treatment of depressed patients is accompanied by restoration of circadian rhythms. The new antidepressant agomelatine is an agonist of melatonergic MT1/MT2 receptors as well as an antagonist of serotonergic 5-HT2C receptors. Animal studies showed that agomelatine resynchronizes disturbed circadian rhythms and reduces depression-like behaviour. Methods. This review analyzes results from different experimental studies. Results. Recent data on the effects of agomelatine on cellular processes involved in antidepressant mechanisms have shown that the drug is able to increase the expression of brain-derived neurotrophic factor in prefrontal cortex and hippocampus, as well as the expression of activity-regulated cytoskeleton associated protein (Arc) in the prefrontal cortex. In line with this, prolonged treatment with agomelatine increases neurogenesis within the hippocampus, particularly via enhancement of neuronal cell survival. Agomelatine attenuates stress-induced glutamate release in the prefrontal/frontal cortex. Treatment with 5-HT2C antagonists or melatonin alone failed to reproduce these effects. Conclusions. The unique mode of action of agomelatine may improve the management of major depression by counteracting the pathogenesis of depression at cellular level, thereby relieving the symptoms of depression. These effects are suggested to be due to a synergistic action on MT1/MT2 and 5-HT2C receptors.
The International Journal of Neuropsychopharmacology | 2009
Ben Ryan; Laura Musazzi; Alessandra Mallei; Daniela Tardito; Suzanne H. M. Gruber; Aram El Khoury; Roger Anwyl; Giorgio Racagni; Aleksander A. Mathé; Michael J. Rowan; Maurizio Popoli
An animal model of depression combining genetic vulnerability and early-life stress (ELS) was prepared by submitting the Flinders Sensitive Line (FSL) rats to a standard paradigm of maternal separation. We analysed hippocampal synaptic transmission and plasticity in vivo and ionotropic receptors for glutamate in FSL rats, in their controls Flinders Resistant Line (FRL) rats, and in both lines subjected to ELS. A strong inhibition of long-term potentiation (LTP) and lower synaptic expression of NR1 subunit of the NMDA receptor were found in FSL rats. Remarkably, ELS induced a remodelling of synaptic plasticity only in FSL rats, reducing inhibition of LTP; this was accompanied by marked increase of synaptic NR1 subunit and GluR2/3 subunits of AMPA receptors. Chronic treatment with escitalopram inhibited LTP in FRL rats, but this effect was attenuated by prior ELS. The present results suggest that early gene-environment interactions cause lifelong synaptic changes affecting functional and molecular aspects of plasticity, partly reversed by antidepressant treatments.
Neuropsychopharmacology | 2012
Gabriele Baj; Valentina D'Alessandro; Laura Musazzi; Alessandra Mallei; Cesar Renato Sartori; Marina Sciancalepore; Daniela Tardito; Francesco Langone; Maurizio Popoli; Enrico Tongiorgi
Brain-derived neurotrophic factor (BDNF) is encoded by multiple BDNF transcripts, whose function is unclear. We recently showed that a subset of BDNF transcripts can traffic into distal dendrites in response to electrical activity, while others are segregated into the somatoproximal domains. Physical exercise and antidepressant treatments exert their beneficial effects through upregulation of BDNF, which is required to support survival and differentiation of newborn dentate gyrus (DG) neurons. While these DG processes are required for the antidepressant effect, a role for CA1 in antidepressant action has been excluded, and the effect on CA3 neurons remains unclear. Here, we show for the first time that physical exercise and antidepressants induce local increase of BDNF in CA3. Voluntary physical exercise for 28 consecutive days, or 2-week treatment with 10 mg/kg per day fluoxetine or reboxetine, produced a global increase of BDNF mRNA and protein in the neuronal somata of the whole hippocampus and a specific increase of BDNF in dendrites of CA3 neurons. This increase was accounted for by BDNF exon 6 variant. In cultured hippocampal neurons, application of serotonin or norepinephrine (10–50 μM) induced increase in synaptic transmission and targeting of BDNF mRNA in dendrites. The increased expression of BDNF in CA3 dendrites following antidepressants or exercise further supports the neurotrophin hypothesis of antidepressants action and confirms that the differential subcellular localization of BDNF mRNA splice variants provides a spatial code for a selective expression of BDNF in specific subcellular districts. This selective expression may be exploited to design more specific antidepressants.
BMC Neuroscience | 2009
Laura Musazzi; Annamaria Cattaneo; Daniela Tardito; Alessandro Barbon; Massimo Gennarelli; Sergio Barlati; Giorgio Racagni; Maurizio Popoli
BackgroundThe neurotrophin BDNF has been implicated in the regulation of neuroplasticity, gene expression, and synaptic function in the adult brain, as well as in the pathophysiology of neuropsychiatric disorders and the mechanism of action of antidepressants. Antidepressant treatments have been shown to increase the expression of BDNF mRNA, although the changes measured were found to be different depending on various factors. A few studies only have measured levels of BDNF protein after antidepressant treatments, and poor correlation was found between mRNA and protein changes. We studied the time course of expression of BDNF mRNA and protein during drug treatments, in order to elucidate the temporal profile of regulation of this effector and whether mRNA and protein levels correlate. Rat groups were treated for 1, 2 or 3 weeks with fluoxetine or reboxetine; in additional groups drug treatment was followed by a washout week (3+1). Total BDNF mRNA was measured by Real Time PCR, pro- and mature BDNF proteins were measured by Western blot.ResultsWe found that mature BDNF protein is induced more rapidly than mRNA, by both drugs in hippocampus (weeks 1–2) and by reboxetine in prefrontal/frontal cortex (week 1). The temporal profile of BDNF protein expression was largely inconsistent with that of mRNA, which followed the protein induction and reached a peak at week 3.ConclusionThese results suggest that BDNF protein is rapidly elevated by antidepressant treatments by posttranscriptional mechanisms, and that induction of BDNF mRNA is a slower process.
Journal of Neurochemistry | 2011
Marco Milanese; Simona Zappettini; Franco Onofri; Laura Musazzi; Daniela Tardito; Tiziana Bonifacino; Mirko Messa; Giorgio Racagni; Cesare Usai; Fabio Benfenati; Maurizio Popoli; Giambattista Bonanno
J. Neurochem. (2011) 116, 1028–1042.
Neuropsychopharmacology | 2007
V.S. Barbiero; Roberto Giambelli; Laura Musazzi; Ettore Tiraboschi; Daniela Tardito; Jorge Perez; Filippo Drago; Giorgio Racagni; Maurizio Popoli
Changes in synaptic plasticity are involved in pathophysiology of depression and in the mechanism of antidepressants. Ca2+/calmodulin (CaM) kinase II, a protein kinase involved in synaptic plasticity, has been previously shown to be a target of antidepressants. We previously found that antidepressants activate the kinase in hippocampal neuronal cell bodies by increasing phosphorylation at Thr286, reduce the kinase phosphorylation in synaptic membranes, and in turn its phosphorylation-dependent interaction with syntaxin-1 and the release of glutamate from hippocampal synaptosomes. Here, we investigated the chronic effect of different antidepressants (fluoxetine, desipramine, and reboxetine) on the expression and function of the kinase in distinct subcellular compartments in order to dissect the different kinase pools affected. Acute treatments did not induce any change in the kinase. In total tissue extracts chronic drug treatments induced activation of the kinase; in hippocampus (HC), but not in prefrontal/frontal cortex, this was partially accounted for by increased Thr286 phosphorylation, suggesting the involvement of different mechanisms of activation. In synaptosomes, all drugs reduced the kinase phosphorylation, particularly in HC where, upon fractionation of the synaptosomal particulate into synaptic vesicles and membranes, we found that the drugs induced a redistribution and differential activation of the kinase between membranes and vesicles. Furthermore, a large decrease in the level and phosphorylation of synapsin I located at synaptic membranes was consistent with the observed decrease of CaM kinase II. Overall, antidepressants induce a complex pattern of modifications in distinct subcellular compartments; at presynaptic level, these changes are in line with a dampening of glutamate release.