Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Ungureanu is active.

Publication


Featured researches published by Daniela Ungureanu.


Molecular and Cellular Biology | 2002

Regulation of Jak2 through the Ubiquitin-Proteasome Pathway Involves Phosphorylation of Jak2 on Y1007 and Interaction with SOCS-1

Daniela Ungureanu; Pipsa Saharinen; Ilkka Junttila; Douglas J. Hilton; Olli Silvennoinen

ABSTRACT The family of cytoplasmic Janus (Jak) tyrosine kinases plays an essential role in cytokine signal transduction, regulating cell survival and gene expression. Ligand-induced receptor dimerization results in phosphorylation of Jak2 on activation loop tyrosine Y1007 and stimulation of its catalytic activity, which, in turn, results in activation of several downstream signaling cascades. Recently, the catalytic activity of Jak2 has been found to be subject to negative regulation through various mechanisms including association with SOCS proteins. Here we show that the ubiquitin-dependent proteolysis pathway is involved in the regulation of the turnover of activated Jak2. In unstimulated cells Jak2 was monoubiquitinated, and interleukin-3 or gamma interferon stimulation induced polyubiquitination of Jak2. The polyubiquitinated Jak2 was rapidly degraded through proteasomes. By using different Jak2 mutants we show that tyrosine-phosphorylated Jak2 is preferentially polyubiquitinated and degraded. Furthermore, phosphorylation of Y1007 on Jak2 was required for proteasomal degradation and for SOCS-1-mediated downregulation of Jak2. The proteasome inhibitor treatment stabilized the Jak2-SOCS-1 protein complex and inhibited the proteolysis of Jak2. In summary, these results indicate that the ubiquitin-proteasome pathway negatively regulates tyrosine-phosphorylated Jak2 in cytokine receptor signaling, which provides an additional mechanism to control activation of Jak2 and maintain cellular homeostasis.


Nature Structural & Molecular Biology | 2011

The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling

Daniela Ungureanu; Jinhua Wu; Tuija Pekkala; Yashavanthi Niranjan; Clifford Young; Ole Nørregaard Jensen; Chong-Feng Xu; Thomas A. Neubert; Radek C. Skoda; Stevan R. Hubbard; Olli Silvennoinen

Human JAK2 tyrosine kinase mediates signaling through numerous cytokine receptors. The JAK2 JH2 domain functions as a negative regulator and is presumed to be a catalytically inactive pseudokinase, but the mechanism(s) for its inhibition of JAK2 remains unknown. Mutations in JH2 lead to increased JAK2 activity, contributing to myeloproliferative neoplasms (MPNs). Here we show that JH2 is a dual-specificity protein kinase that phosphorylates two negative regulatory sites in JAK2: Ser523 and Tyr570. Inactivation of JH2 catalytic activity increased JAK2 basal activity and downstream signaling. Notably, different MPN mutations abrogated JH2 activity in cells, and in MPN (V617F) patient cells phosphorylation of Tyr570 was reduced, suggesting that loss of JH2 activity contributes to the pathogenesis of MPNs. These results identify the catalytic activity of JH2 as a previously unrecognized mechanism to control basal activity and signaling of JAK2.


Nature Structural & Molecular Biology | 2012

Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F

Rajintha M Bandaranayake; Daniela Ungureanu; Yibing Shan; David E. Shaw; Olli Silvennoinen; Stevan R. Hubbard

The protein tyrosine kinase JAK2 mediates signaling through numerous cytokine receptors. JAK2 possesses a pseudokinase domain (JH2) and a tyrosine kinase domain (JH1). Through unknown mechanisms, JH2 regulates the catalytic activity of JH1, and hyperactivating mutations in the JH2 region of human JAK2 cause myeloproliferative neoplasms (MPNs). We showed previously that JAK2 JH2 is, in fact, catalytically active. Here we present crystal structures of human JAK2 JH2, including both wild type and the most prevalent MPN mutant, V617F. The structures reveal that JH2 adopts the fold of a prototypical protein kinase but binds Mg-ATP noncanonically. The structural and biochemical data indicate that the V617F mutation rigidifies α-helix C in the N lobe of JH2, facilitating trans-phosphorylation of JH1. The crystal structures of JH2 afford new opportunities for the design of novel JAK2 therapeutics targeting MPNs.


Biochemical Journal | 2014

A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties

James M. Murphy; Qingwei Zhang; Samuel N. Young; Michael L. Reese; Fiona P. Bailey; Patrick A. Eyers; Daniela Ungureanu; Henrik Hammarén; Olli Silvennoinen; Leila N. Varghese; Kelan Chen; Anne Tripaydonis; Natalia Jura; Koichi Fukuda; Jun Qin; Zachary L. Nimchuk; Mary Beth Mudgett; Sabine Elowe; Christine L. Gee; Ling Liu; Roger J. Daly; Gerard Manning; Jeffrey J. Babon; Isabelle S. Lucet

Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.


Nature Structural & Molecular Biology | 2014

Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase

Yibing Shan; Gnanasambandan K; Daniela Ungureanu; Kim Et; Henrik Hammarén; Yamashita K; Olli Silvennoinen; David E. Shaw; Hubbard

Janus kinase-2 (JAK2) mediates signaling by various cytokines, including erythropoietin and growth hormone. JAK2 possesses tandem pseudokinase and tyrosine-kinase domains. Mutations in the pseudokinase domain are causally linked to myeloproliferative neoplasms (MPNs) in humans. The structure of the JAK2 tandem kinase domains is unknown, and therefore the molecular bases for pseudokinase-mediated autoinhibition and pathogenic activation remain obscure. Using molecular dynamics simulations of protein-protein docking, we produced a structural model for the autoinhibitory interaction between the JAK2 pseudokinase and kinase domains. A striking feature of our model, which is supported by mutagenesis experiments, is that nearly all of the disease mutations map to the domain interface. The simulations indicate that the kinase domain is stabilized in an inactive state by the pseudokinase domain, and they offer a molecular rationale for the hyperactivity of V617F, the predominant JAK2 MPN mutation.


Biochemical Journal | 2008

MAPK-induced Ser727 phosphorylation promotes SUMOylation of STAT1.

Sari Vanhatupa; Daniela Ungureanu; Maija Paakkunainen; Olli Silvennoinen

STAT1 (signal transducer and activator of transcription 1) is a critical mediator of IFN-gamma (interferon-gamma)-induced gene responses, and its function is regulated through phosphorylation of Tyr701 and Ser727. MAPK (mitogen-activated protein kinase) pathways mediate phosphorylation of Ser727 in response to microbial infections, stress stimuli and growth factors. Recently, STAT1 was found to become modified by PIAS (protein inhibitor of activated STAT)-mediated SUMO-1 (small ubiquitin-related modifier-1) conjugation at Lys703, but the regulation of this modification is largely unknown. Here, we have investigated the role of MAPK-induced Ser727 phosphorylation in regulation of STAT1 SUMOylation. Activation of the p38MAPK pathway by upstream activating kinase, MKK6 (MAPK kinase-6) or osmotic stress enhanced the SUMOylation of STAT1, which was counteracted by the p38MAPK inhibitor SB202190 or by dominant-negative p38MAPK. Activation of the ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway by Raf-1 also enhanced Ser727 phosphorylation and SUMOylation of STAT1, and this induction was counteracted by PD98059 inhibitor. Mutation of Ser727 to alanine abolished the p38MAPK-induced SUMOylation. Furthermore, S727D and S727E mutations, which mimic the phosphorylation of Ser727, enhanced the basal SUMOylation of STAT1 and interaction between PIAS1 and STAT1. Taken together, these results identify Ser727 phosphorylation as a regulator of STAT1 SUMOylation and highlight the central role of Ser727 in co-ordination of STAT1 functions in cellular responses.


Proceedings of the National Academy of Sciences of the United States of America | 2015

ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation

Henrik Hammarén; Daniela Ungureanu; Jean Grisouard; Radek C. Skoda; Stevan R. Hubbard; Olli Silvennoinen

Significance Mutations in the JAK pseudokinase domain are bona fide oncogenic drivers that underlie many myeloproliferative and autoimmune diseases in humans. The JAK2 V617F mutation is responsible for ∼95% of polycythemia vera and ∼60% of primary myelofibrosis and essential thrombocytosis cases. Currently, developed JAK2 tyrosine kinase inhibitors have not been able to eradicate disease caused by mutated JAK2. The data presented here show that alteration of the ATP binding site of the pseudokinase domain has the potential to suppress JAK hyperactivation caused by pathogenic mutations, with minimal effects on wild-type JAK, thus establishing the ATP binding site of the pseudokinase domain as a potential pharmacological target. Pseudokinases lack conserved motifs typically required for kinase activity. Nearly half of pseudokinases bind ATP, but only few retain phosphotransfer activity, leaving the functional role of nucleotide binding in most cases unknown. Janus kinases (JAKs) are nonreceptor tyrosine kinases with a tandem pseudokinase–kinase domain configuration, where the pseudokinase domain (JAK homology 2, JH2) has important regulatory functions and harbors mutations underlying hematological and immunological diseases. JH2 of JAK1, JAK2, and TYK2 all bind ATP, but the significance of this is unclear. We characterize the role of nucleotide binding in normal and pathogenic JAK signaling using comprehensive structure-based mutagenesis. Disruption of JH2 ATP binding in wild-type JAK2 has only minor effects, and in the presence of type I cytokine receptors, the mutations do not affect JAK2 activation. However, JH2 mutants devoid of ATP binding ameliorate the hyperactivation of JAK2 V617F. Disrupting ATP binding in JH2 also inhibits the hyperactivity of other pathogenic JAK2 mutants, as well as of JAK1 V658F, and prevents induction of erythrocytosis in a JAK2 V617F myeloproliferative neoplasm mouse model. Molecular dynamic simulations and thermal-shift analysis indicate that ATP binding stabilizes JH2, with a pronounced effect on the C helix region, which plays a critical role in pathogenic activation of JAK2. Taken together, our results suggest that ATP binding to JH2 serves a structural role in JAKs, which is required for aberrant activity of pathogenic JAK mutants. The inhibitory effect of abrogating JH2 ATP binding in pathogenic JAK mutants may warrant novel therapeutic approaches.


PLOS ONE | 2011

Analysis of jak2 catalytic function by peptide microarrays: The role of the JH2 domain and V617F mutation

Arturo Sanz Sanz; Daniela Ungureanu; Tuija Pekkala; Rob Ruijtenbeek; Ivo P. Touw; Riet Hilhorst; Olli Silvennoinen

Janus kinase 2 (JAK2) initiates signaling from several cytokine receptors and is required for biological responses such as erythropoiesis. JAK2 activity is controlled by regulatory proteins such as Suppressor of Cytokine Signaling (SOCS) proteins and protein tyrosine phosphatases. JAK2 activity is also intrinsically controlled by regulatory domains, where the pseudokinase (JAK homology 2, JH2) domain has been shown to play an essential role. The physiological role of the JH2 domain in the regulation of JAK2 activity was highlighted by the discovery of the acquired missense point mutation V617F in myeloproliferative neoplasms (MPN). Hence, determining the precise role of this domain is critical for understanding disease pathogenesis and design of new treatment modalities. Here, we have evaluated the effect of inter-domain interactions in kinase activity and substrate specificity. By using for the first time purified recombinant JAK2 proteins and a novel peptide micro-array platform, we have determined initial phosphorylation rates and peptide substrate preference for the recombinant kinase domain (JH1) of JAK2, and two constructs comprising both the kinase and pseudokinase domains (JH1-JH2) of JAK2. The data demonstrate that (i) JH2 drastically decreases the activity of the JAK2 JH1 domain, (ii) JH2 increased the Km for ATP (iii) JH2 modulates the peptide preference of JAK2 (iv) the V617F mutation partially releases this inhibitory mechanism but does not significantly affect substrate preference or Km for ATP. These results provide the biochemical basis for understanding the interaction between the kinase and the pseudokinase domain of JAK2 and identify a novel regulatory role for the JAK2 pseudokinase domain. Additionally, this method can be used to identify new regulatory mechanisms for protein kinases that provide a better platform for designing specific strategies for therapeutic approaches.


Science Signaling | 2005

SLIM Trims STATs: Ubiquitin E3 Ligases Provide Insights for Specificity in the Regulation of Cytokine Signaling

Daniela Ungureanu; Olli Silvennoinen

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway has evolved to serve highly specialized functions in the regulation of hematopoiesis, cell metabolism, and immune responses. The duration, strength, and specificity of cytokine signaling are controlled by several mechanisms, including the ubiquitin-proteasome pathway, which modulates the turnover of cytokine receptors and activated JAKs. The specificity of the ubiquitin pathway is achieved through various E3 ligase complexes that recognize and interact with distinct target proteins, often in a phosphorylation-dependent manner. Intriguing new information about the ubiquitin pathway came with the identification of an E3 ubiquitin ligase, SLIM, that specifically interacts with activated STAT1 and STAT4 and induces their ubiquitination and degradation. These findings, together with the evidence from paramyxoviruses about the role of ubiquitination as a highly specific STAT inhibition mechanism, highlight the role of E3 ubiquitin ligases as specificity determinants in the regulation of STAT activation, and open the field for investigation of additional E3s that target other STAT proteins.


Biochemical Society Transactions | 2013

New insights into the structure and function of the pseudokinase domain in JAK2

Olli Silvennoinen; Daniela Ungureanu; Yashavanthi Niranjan; Henrik Hammarén; Rajintha M Bandaranayake; Stevan R. Hubbard

JAK (Janus kinase) 2 plays a critical role in signal transduction through several cytokine receptors. JAKs contain a typical tyrosine kinase domain preceded by a pseudokinase [JH2 (JAK homology 2)] domain which has been considered to be catalytically inactive. Identification of activating mutations in the JH2 domain of JAK2 as the major cause for polycythaemia vera and other MPNs (myeloproliferative neoplasms) demonstrate the critical regulatory function for this domain, but the underlying mechanisms have remained elusive. We have performed biochemical and functional analysis on the JH2 domain of JAK2. The results indicate that JH2 functions as an active protein kinase and phosphorylates two residues in JAK2 (Ser523 and Tyr570) that have been shown previously to be negative regulatory sites for JAK2 activity. The crystal structure of the JAK2 JH2 domain provides an explanation for the functional findings and shows that JH2 adopts a prototypical kinase fold, but binds MgATP through a non-canonical mode. The structure of the most prevalent pathogenic JH2 mutation V617F shows a high level of similarity to wild-type JH2. The most notable structural deviation is observed in the N-lobe αC-helix. The structural and biochemical data together with MD (molecular dynamics) simulations show that the V617F mutation rigidifies the αC-helix, which results in hyperactivation of the JH1 domain through an as yet unidentified mechanism. These results provide structural and functional insights into the normal and pathogenic function of the JH2 domain of JAK2.

Collaboration


Dive into the Daniela Ungureanu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mika Rämet

Oulu University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge