Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Virgintino is active.

Publication


Featured researches published by Daniela Virgintino.


Angiogenesis | 2007

An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis

Daniela Virgintino; Francesco Girolamo; Mariella Errede; Carmen Capobianco; David Robertson; William B. Stallcup; Roberto Perris; Luisa Roncali

In order to better understand the process of angiogenesis in the developing human brain, we have examined the spatial relationship and relative contributions of endothelial cells and pericytes, the two primary cell types involved in vessel growth, together with their relation with the vascular basement membrane. Pericytes were immunolocalized through use of the specific markers nerve/glial antigen 2 (NG2) proteoglycan, endosialin (CD248) and the platelet-derived growth factor receptor β (PDGFR-β), while endothelial cells were identified by the pan-endothelial marker CD31 and the blood brain barrier (BBB)-specific markers claudin-5 and glucose transporter isoform 1 (GLUT-1). The quantitative analysis demonstrates that microvessels of the fetal human telencephalon are characterized by a continuous layer of activated/angiogenic NG2 pericytes, which tightly invest endothelial cells and participate in the earliest stages of vessel growth. Immunolabelling with anti-active matrix metalloproteinase-2 (aMMP-2) and anti-collagen type IV antibodies revealed that aMMP-2 producing endothelial cells and pericytes are both associated with the vascular basement membrane during vessel sprouting. Detailed localization of the two vascular cell types during angiogenesis suggests that growing microvessels of the human telencephalon are formed by a pericyte-driven angiogenic process in which the endothelial cells are preceded and guided by migrating pericytes during organization of the growing vessel wall.


Journal of Histochemistry and Cytochemistry | 2002

Expression of P-Glycoprotein in Human Cerebral Cortex Microvessels

Daniela Virgintino; David Robertson; Mariella Errede; Vincenzo Benagiano; Francesco Girolamo; Eugenio Maiorano; Luisa Roncali; Bertossi M

P-Glycoprotein (P-gp) is an ATP-dependent efflux transporter that extrudes non-polar molecules, including cytotoxic substances and drugs, from the cells. It was initially found in cancer cells and then was shown to be a normal component of complex transport systems working at the blood-brain barrier (BBB). Previous studies have demonstrated that, in the brain, P-gp is localized on the luminal plasmalemma of BBB endothelial cells and that it may interact with the caveolar compartment of these cells. The aim of this study was to identify the site of cellular expression of P-gp in human brain in situ and to morphologically determine whether an association may exist between P-gp and caveolin-1, a structural and functional protein of the caveolar frame. The study was carried out on human cerebral cortex by immunoconfocal microscopy with antibodies to both P-gp and caveolin-1. The results show that P-gp marks the microvessels of the cortex and that the transporter is localized in the luminal endothelial compartment, where it co-localizes with caveolin-1. The demonstration of this co-localization of P-gp with caveolin-1 contributes a morphological backing to biochemical studies on P-gp/caveolin-1 relationships and leads us to suggest that interactions between these molecules may occur at the BBB endothelia.


Ultrastructural Pathology | 1997

Ultrastructural and Morphometric Investigation of Human Brain Capillaries in Normal and Peritumoral Tissues

Bertossi M; Daniela Virgintino; Eugenio Maiorano; M. Occhiogrosso; Luisa Roncali

Capillaries of peritumoral and normal brain tissues were ultrastructurally and morphometrically investigated to evaluate the changes in peritumoral capillaries connected with the tumor-associated vasogenic edema. The endothelial cells of peritumoral capillaries showed varying thickness, electron-lucent cytoplasm, and structurally normal tight junctions. The basal lamina was thickened, rarefied, and vacuolated. The pericytes were provided with pinocytotic vesicles and phagocytic bodies. The astrocytic glia appeared empty or swollen, with few glycogen granules and a disarranged cytoskeleton; well-preserved glia was occasionally observed. The brain tissue was slightly edematous. No statistically significant differences were observed between normal and peritumoral capillaries as regards diameter, wall thickness, endothelial thickness, and endothelial vesicle density. Instead, the peritumoral capillaries displayed three times as many endothelial surface-connected vesicles, a markedly thicker basal lamina, and significantly reduced extension of pericytic and glial investments. The kind and severity of the vascular modifications, compared with the slight edematous appearance of the nervous tissue, strengthen the hypothesis that peritumoral capillaries could be involved in the edema resolution process.


Neuroscience | 2002

Expression of caveolin-1 in human brain microvessels

Daniela Virgintino; David Robertson; Mariella Errede; Vincenzo Benagiano; U Tauer; Luisa Roncali; Mirella Bertossi

Caveolae are microinvaginations of the cell plasma membrane involved in cell transport and metabolism as well as in signal transduction; these functions depend on the presence of integral proteins named caveolins in the caveolar frame. In the brain, various caveolin subtypes have been detected in vivo by immunocytochemistry: caveolin-1 and -2 were found in rat brain microvessels, caveolin-3 was revealed in astrocytes. The aim of this study was to identify the site(s) of cellular expression of caveolin-1 in the microvessels of the human cerebral cortex by immunofluorescence confocal microscopy and immunogold electron microscopy. Since in the barrier-provided brain microvessels tight relations occur between the endothelium-pericyte layer and the surrounding vascular astrocytes, double immunostaining with caveolin-1 and the astroglia marker, glial fibrillary acidic protein, was also carried out. Immunocytochemistry by confocal microscopy revealed that caveolin-1 is expressed by endothelial cells and pericytes in all the cortex microvessels; caveolin-1 is also expressed by cells located in the neuropil around the microvessels and identified as astrocytes. Study of the cortex microvessels carried out by immunoelectron microscopy confirmed that in the vascular wall caveolin-1 is expressed by endothelial cells, pericytes, and vascular astrocytes, and revealed the association of caveolin-1 with the cell caveolar compartment. The demonstration of caveolin-1 in the cells of the brain microvessels suggests that caveolin-1 may be involved in blood-brain barrier functioning, and also supports co-ordinated activities between these cells.


Development | 2003

Transgenic mice expressing F3/contactin from the TAG-1 promoter exhibit developmentally regulated changes in the differentiation of cerebellar neurons

Antonella Bizzoca; Daniela Virgintino; Loredana Lorusso; Maura Buttiglione; Lynn Yoshida; Angela Polizzi; Maria Tattoli; Raffaele Cagiano; Ferdinando Rossi; Serguei Kozlov; Andrew J. Furley; Gianfranco Gennarini

F3/contactin (CNTN1) and TAG-1 (CNTN2) are closely related axonal glycoproteins that are differentially regulated during development. In the cerebellar cortex TAG-1 is expressed first as granule cell progenitors differentiate in the premigratory zone of the external germinal layer. However, as these cells begin radial migration, TAG-1 is replaced by F3/contactin. To address the significance of this differential regulation, we have generated transgenic mice in which F3/contactin expression is driven by TAG-1 gene regulatory sequences, which results in premature expression of F3/contactin in granule cells. These animals (TAG/F3 mice) display a developmentally regulated cerebellar phenotype in which the size of the cerebellum is markedly reduced during the first two postnatal weeks but subsequently recovers. This is due in part to a reduction in the number of granule cells, most evident in the external germinal layer at postnatal day 3 and in the inner granular layer between postnatal days 8 and 11. The reduction in granule cell number is accompanied by a decrease in precursor granule cell proliferation at postnatal day 3, followed by an increase in the number of cycling cells at postnatal day 8. In the same developmental window the size of the molecular layer is markedly reduced and Purkinje cell dendrites fail to elaborate normally. These data are consistent with a model in which deployment of F3/contactin on granule cells affects proliferation and differentiation of these neurons as well as the differentiation of their synaptic partners, the Purkinje cells. Together, these findings indicate that precise spatio-temporal regulation of TAG-1 and F3/contactin expression is critical for normal cerebellar morphogenesis.


Journal of Neuropathology and Experimental Neurology | 2008

Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins

Hideyuki Ishihara; Hisashi Kubota; Raija L.P. Lindberg; David Leppert; Sergio M. Gloor; Mariella Errede; Daniela Virgintino; Adriano Fontana; Yasuhiro Yonekawa; Karl Frei

Abstract Gliomas, particularly glioblastoma multiforme, perturb the blood-brain barrier and cause brain edema that contributes to morbidity and mortality. The mechanisms underlying this vasogenic edema are poorly understood. We examined the effects of cocultured primary cultured human glioblastoma cells and glioma-derived growth factors on the endothelial cell tight junction proteins claudin 1, claudin 5, occludin, and zonula occludens 1 of brain-derived microvascular endothelial cells and a human umbilical vein endothelial cell line. Cocultured glioblastoma cells and glioma-derived factors (e.g. transforming growth factor &bgr;2) enhanced the paracellular flux of endothelial cell monolayers in conjunction with downregulation of the tight junction proteins. Neutralizing anti-transforming growth factor &bgr;2 antibodies partially restored the barrier properties in this in vitro blood-brain barrier model. The involvement of endothelial cell-derived matrix metalloproteinases (MMPs) was demonstrated by quantitative reverse-transcriptase-polymerase chain reaction analysis and by the determination of MMP activities via zymography and fluorometry in the presence or absence of the MMP inhibitor GM6001. Occludin, claudin 1, and claudin 5 were expressed in microvascular endothelial cells in nonneoplastic brain samples but were significantly reduced in anaplastic astrocytoma and glioblastoma samples. Taken together, these in vitro and in vivo results indicate that glioma-derived factors may induce MMPs and downregulate endothelial tight junction protein and, thus, play a key role in glioma-induced impairment of the blood-brain barrier.


Histochemistry and Cell Biology | 2003

VEGF expression is developmentally regulated during human brain angiogenesis

Daniela Virgintino; Mariella Errede; David Robertson; Francesco Girolamo; Antonio Masciandaro; Mirella Bertossi

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor working as an endothelial cell-specific mitogen and exerting a trophic effect on neurons and glial cells, both these activities being essential during central nervous system vascularisation, development and repair. The vascularisation of human telencephalon takes place by means of an angiogenic mechanism, which starts at the beginning of corticogenesis and actively proceeds up to the last neuronal migration, when the basic scheme of the vascular network has been drawn. Our study focused on VEGF during this critical developmental period with the aim of identifying the cells that express VEGF and of correlating the events of angiogenesis with the main events of cerebral cortex formation. The results show that in fetal human brain VEGF protein is located on multiple cell types, cells proper to the nervous tissue, neuroepithelial cells, neuroblasts and radial glia cells, and non-neuronal cells, endothelial and periendothelial cells. In these cells VEGF expression appears developmentally regulated and is correlated with angiogenesis, which in turn responds to the high metabolic demands of the differentiating neocortex.


Journal of Neuropathology and Experimental Neurology | 2008

Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development.

Daniela Virgintino; Mariella Errede; Francesco Girolamo; Carmen Capobianco; David Robertson; Antonella Vimercati; Gabriella Serio; Adriana Di Benedetto; Yasuhiro Yonekawa; Karl Frei; Luisa Roncali

During brain development and blood-brain barrier (BBB) differentiation the expression of P-glycoprotein (P-gp) may complement the protective function of the placental barrier against xenobiotic substances. To establish an immunohistochemical procedure for P-gp detection, different anti-P-gp monoclonal antibodies were first tested on a fibrosarcoma cell line and colonic carcinoma tissue. The protocol was then tested on adult human brains as a BBB-P-gp tissue-specific control and for double labeling with anti-P-gp and the astroglia marker glial fibrillary acidic protein (GFAP). The protocol was then used to analyze the expression and localization of P-gp in human fetuses during cerebral cortex formation. At the earliest examined stage, 12 weeks of gestation (wg), P-gp was detectable as diffuse cytoplasmic labeling of the endothelial cells lining the primary cortex microvessels. At 18 wg, a punctate P-gp staining pattern was detected on cortex and subcortical vessels and on their side branches. At 22 wg, P-gp staining was linear and concentrated on endothelial cell membranes. In all examined ages, GFAP-positive radial glial cells and astrocytes did not stain for P-gp, even at their perivascular processes, whereas faint P-gp labeling was seen on vimentin-reactive radial glia at the earliest examined fetal age. At midgestation, P-gp colocalized with caveolin-pY14 on the abluminal endothelial cell membrane. These results demonstrate that P-gp is expressed early during human cerebral cortical microvessel development, and suggest that at midgestation there may be efflux activity that is regulated by interactions with the caveolar endothelial cell compartment.


Journal of Neuropathology and Experimental Neurology | 2012

Blood-Brain Barrier Alterations in the Cerebral Cortex in Experimental Autoimmune Encephalomyelitis

Mariella Errede; Francesco Girolamo; Giovanni Ferrara; Maurizio Strippoli; Sara Morando; Valentina Boldrin; Marco Rizzi; Antonio Uccelli; Roberto Perris; Caterina Bendotti; Mario Salmona; Luisa Roncali; Daniela Virgintino

Abstract The pathophysiology of cerebral cortical lesions in multiple sclerosis (MS) is not understood. We investigated cerebral cortex microvessels during immune-mediated demyelination in the MS model chronic murine experimental autoimmune encephalomyelitis (EAE) by immunolocalization of the endothelial cell tight junction (TJ) integral proteins claudin-5 and occludin, a structural protein of caveolae, caveolin-1, and the blood-brain barrier–specific endothelial transporter, Glut 1. In EAE-affected mice, there were areas of extensivesubpial demyelination and well-demarcated lesions that extended to deeper cortical layers. Activation of microglia and absence of perivascular inflammatory infiltrates were common in these areas. Microvascular endothelial cells showed increased expression of caveolin-1 and a coincident loss of both claudin-5 and occludin normal junctional staining patterns. At a very early disease stage, claudin-5 molecules tended to cluster and form vacuoles that were also Glut 1 positive; the initially preserved occludin pattern became diffusely cytoplasmic at more advanced stages. Possible internalization of claudin-5 on TJ dismantling was suggested by its coexpression with the autophagosomal marker MAP1LC3A. Loss of TJ integrity was confirmed by fluorescein isothiocyanate–dextran experimentsthat showed leakage of the tracer into the perivascular neuropil. These observations indicate that, in the cerebral cortex of EAE-affected mice, there is a microvascular disease that differentially targets claudin-5 and occludin during ongoing demyelination despite only minimal inflammation.


The Journal of Comparative Neurology | 1999

REGIONAL DISTRIBUTION AND CELL TYPE-SPECIFIC EXPRESSION OF THE MOUSE F3 AXONAL GLYCOPROTEIN : A DEVELOPMENTAL STUDY

Daniela Virgintino; Margherita Ambrosini; Patrizia D'Errico; Bertossi M; Chara Papadaki; Domna Karagogeos; Gianfranco Gennarini

The expression of the mouse axonal adhesive glycoprotein F3 and of its mRNA was studied on sections of mouse cerebellar cortex, cerebral cortex, hippocampus, and olfactory bulb from postnatal days 0 (P0) to 30 (P30). In cerebellar cortex, a differential expression of F3 in granule versus Purkinje neurons was observed. F3 was highly expressed during migration of and initial axonal growth from cerebellar granule cells. The molecule was then downregulated on cell bodies and remained expressed, although at low levels, on their axonal extensions. On Purkinje cells, F3 was strongly expressed on cell bodies and processes at the beginning of the second postnatal week; by P16 it was restricted to neurites of Purkinje cells subpopulations. In the cerebral cortex, the molecule was highly expressed on migrating neurons at P0; by P16, it was found essentially within the neuropil with a diffuse pattern. In the hippocampal formation, where F3 was expressed on both pyramidal and granule neurons, a clear shift from the cell bodies to neurite extensions was observed on P3. In the olfactory pathway, F3 was expressed mainly on olfactory nerve fibers, mitral cells, and the synaptic glomeruli from P0 to P3, with a sharp decline from P11 to P16. As a whole, the data show that F3 protein expression is regulated at the regional, cellular, and subcellular levels and suggest that, in different regions, it can be proposed as a reliable neuronal differentiation marker. J. Comp. Neurol. 413:357–372, 1999.

Collaboration


Dive into the Daniela Virgintino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge