Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniela Vullo is active.

Publication


Featured researches published by Daniela Vullo.


Bioorganic & Medicinal Chemistry Letters | 2014

Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the η-carbonic anhydrases.

Sonia Del Prete; Daniela Vullo; Gillian M. Fisher; Katherine Thea Andrews; Sally-Ann Poulsen; Clemente Capasso; Claudiu T. Supuran

The genome of the protozoan parasite Plasmodium falciparum, the causative agent of the most lethal type of human malaria, contains a single gene annotated as encoding a carbonic anhydrase (CAs, EC 4.2.1.1) thought to belong to the α-class, PfCA. Here we demonstrate the kinetic properties of PfCA for the CO2 hydration reaction, as well as an inhibition study of this enzyme with inorganic and complex anions and other molecules known to interact with zinc proteins, including sulfamide, sulfamic acid, and phenylboronic/arsonic acids, detecting several low micromolar inhibitors. A closer examination of the sequence of this and the CAs from other Plasmodium spp., as well as a phylogenetic analysis, revealed that these protozoa encode for a yet undisclosed, new genetic family of CAs termed the η-CA class. The main features of the η-CAs are described in this report.


Journal of Biological Chemistry | 2008

Carbonic anhydrase in the scleractinian coral stylophora pistillata: characterization, localization, and role in biomineralization

Aurélie Moya; Sylvie Tambutté; Anthony Bertucci; Eric Tambutté; Severine Lotto; Daniela Vullo; Claudiu T. Supuran; Denis Allemand; Didier Zoccola

Carbonic anhydrases (CA) play an important role in biomineralization from invertebrates to vertebrates. Previous experiments have investigated the role of CA in coral calcification, mainly by pharmacological approaches. This study reports the molecular cloning, sequencing, and immunolocalization of a CA isolated from the scleractinian coral Stylophora pistillata, named STPCA. Results show that STPCA is a secreted form of α-CA, which possesses a CA catalytic function, similar to the secreted human CAVI. We localized this enzyme at the calicoblastic ectoderm level, which is responsible for the precipitation of the skeleton. This localization supports the role of STPCA in the calcification process. In symbiotic scleractinian corals, calcification is stimulated by light, a phenomenon called “light-enhanced calcification” (LEC). The mechanism by which symbiont photosynthesis stimulates calcification is still enigmatic. We tested the hypothesis that coral genes are differentially expressed under light and dark conditions. By real-time PCR, we investigated the differential expression of STPCA to determine its role in the LEC phenomenon. Results show that the STPCA gene is expressed 2-fold more during the dark than the light. We suggest that in the dark, up-regulation of the STPCA gene represents a mechanism to cope with night acidosis.


Bioorganic & Medicinal Chemistry Letters | 2003

Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with aromatic and heterocyclic sulfonamides

Daniela Vullo; Marco Franchi; Enzo Gallori; Jaromir Pastorek; Andrea Scozzafava; Silvia Pastorekova; Claudiu T. Supuran

The inhibition of the tumor-associated transmembrane carbonic anhydrase IX (CA IX) isozyme has been investigated with a series of aromatic and heterocyclic sulfonamides, including the six clinically used derivatives acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide and brinzolamide. Inhibition data for the physiologically relevant isozymes I and II (cytosolic forms) and IV (membrane-bound) were also provided for comparison. A very interesting and unusual inhibition profile against CA IX with these sulfonamides has been observed. Several nanomolar (K(I)-s in the range of 14-50 nM) CA IX inhibitors have been detected, both among the aromatic (such as orthanilamide, homosulfonilamide, 4-carboxy-benzenesulfonamide, 1-naphthalenesulfonamide and 1,3-benzenedisulfonamide derivatives) as well as the heterocylic (such as 1,3,4-thiadizole-2-sulfonamide, etc.) sulfonamides examined. Because CA IX is a highly active isozyme predominantly expressed in tumor tissues with poor prognosis of disease progression, this finding is very promising for the potential design of CA IX-specific inhibitors with applications as anti-tumor agents.


Current Medicinal Chemistry - Cardiovascular & Hematological Agents | 2004

Designing of Novel Carbonic Anhydrase Inhibitors and Activators.

Claudiu T. Supuran; Daniela Vullo; Gheorghe Manole; Angela Casini; Andrea Scozzafava

Carbonic anhydrases (CAs, EC 4.2.1.1) are wide spread enzymes, present in mammals in at least 14 different isoforms: some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII), while others are membrane-bound (CA IV, CA IX, CA XII and CA XIV); CA V is mitochondrial, and CA VI is secreted in the saliva. Three acatalytic forms are also known (CARP VIII, CARP X and CARP XI). Several important physiological and physio-pathological functions are played by many CA isozymes, which are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped in the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs will be discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, constituting thus interesting leads for developing novel antitumor therapies. Future prospects for drug design applications for inhibitors of these ubiquitous enzymes will be dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation for this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II - activator adducts, X-ray crystallographic studies have also been reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators will be discussed for the isozymes for which the phenomenon has been studied, i.e., CA I, II, III and IV. The possible physiologic relevance of CA activation will also be addressed, together with the recent pharmacological applications of blood CA isozymes activators, as potential memory enhancing drugs.


Journal of Medicinal Chemistry | 2004

Carbonic Anhydrase Inhibitors. Inhibition of Mitochondrial Isozyme V with Aromatic and Heterocyclic Sulfonamides

Daniela Vullo; Marco Franchi; Enzo Gallori; Jochen Antel; and Andrea Scozzafava; Claudiu T. Supuran

The first inhibition study of the mitochondrial isozyme carbonic anhydrase (CA) V (of murine origin) with a series of aromatic and heterocyclic sulfonamides is reported. Inhibition data of the cytosolic isozymes CA I and CA II and the membrane-bound isozyme CA IV with these inhibitors are also provided for comparison. Several low nanomolar CA V inhibitors were detected (KI values in the range of 4-15 nM), most of them belonging to the acylated sulfanilamide, ureido-benzenesulfonamide, 1,3,4-thiadiazole-2-sulfonamide, and aminobenzolamide type of compounds. The clinically used inhibitors acetazolamide, methazolamide, ethoxzolamide, dorzolamide, brinzolamide, and topiramate on the other hand were less effective CA V inhibitors, showing inhibition constants in the range of 47-63 nM. Some of the investigated sulfonamides, such as the ureido-benzenesulfonamides and the acylated sulfanilamides showed higher affinity for CA V than for the other isozymes, CA II included, which is a remarkable result, since most compounds investigated up to now inhibited the cytosolic isozyme CA II better. These results prompt us to hypothesize that the selective inhibition of CA V, or the dual inhibition of CA II and CA V, may lead to the development of novel pharmacological applications for such sulfonamides, for example in the treatment or prevention of obesity, by inhibiting CA-mediated lipogenetic processes.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2013

Dithiocarbamates strongly inhibit the β-class carbonic anhydrases from Mycobacterium tuberculosis

Alfonso Maresca; Fabrizio Carta; Daniela Vullo; Claudiu T. Supuran

A series of N-mono- and N,N-disubstituted dithiocarbamates have been investigated as inhibitors of two β-carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Mycobacterium tuberculosis, mtCA 1 (Rv1284) and mtCA 3 (Rv3273). Both enzymes were inhibited with efficacies between the subnanomolar to the micromolar one, depending on the substitution pattern at the nitrogen atom from the dithiocarbamate zinc-binding group. Aryl, arylalkyl-, heterocyclic as well as aliphatic and amino acyl such moieties led to potent mtCA 1 and 3 inhibitors in both the N-mono- and N,N-disubstituted dithiocarbamate series. This new class of β-CA inhibitors may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug/extensive multi-drug resistance.


Journal of Medicinal Chemistry | 2013

Sulfocoumarins (1,2-benzoxathiine-2,2-dioxides): A class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases

Kaspars Tars; Daniela Vullo; Andris Kazaks; Janis Leitans; Alons Lends; Aiga Grandane; Raivis Zalubovskis; Andrea Scozzafava; Claudiu T. Supuran

Coumarins were recently shown to constitute a novel class of mechanism-based carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. We demonstrate that sulfocoumarins (1,2-benzoxathiine 2,2-dioxides) possess a similar mechanism of action, acting as effective CA inhibitors. The sulfocoumarins were hydrolyzed by the esterase CA activity to 2-hydroxyphenyl-vinylsulfonic acids, which thereafter bind to the enzyme in a region rarely occupied by other classes of inhibitors. The X-ray structure of one of these compounds in adduct with a modified CA II enzyme possessing two amino acid residues from the CA IX active site, allowed us to decipher the inhibition mechanism. The sulfonic acid was observed anchored to the zinc-coordinated water molecule, making favorable interactions with Thr200 and Pro201. Some other sulfocoumarins incorporating substituted-1,2,3-triazole moieties were prepared by using click chemistry and showed low nanomolar inhibitory action against the tumor-associated isoforms CA IX and XII, being less effective against the cytosolic CA I and II.


Bioorganic & Medicinal Chemistry | 2008

Carbonic anhydrase inhibitors: Inhibition of mammalian isoforms I–XIV with a series of substituted phenols including paracetamol and salicylic acid

Alessio Innocenti; Daniela Vullo; Andrea Scozzafava; Claudiu T. Supuran

Inhibition of 12 mammalian isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), CA I-XIV, with a series of phenols was investigated. The inhibition profile by phenols of these CAs was distinct from those of the sulfonamides and their isosteres, the main class of clinically used inhibitors. Phenol and some of its 2-, 3- and 4-substituted derivatives incorporating hydroxy-, fluoro-, carboxy-, amino-, cyano- and acetamido-moieties were generally effective low micromolar CA inhibitors, with inhibition constants in the range of 9.8-4003 microM against CA I, of 0.090-870 microM against CA II, of 0.71-885 microM against CA III, of 9.5-809 microM against CA IV, of 8.7-867 microM against CA VA, of 4.2-649 microM against CA VB, of 11.4-658 microM against CA VI, of 9.1-1359 microM against CA VII, of 8.8-517 microM against CA IX, of 4.1-598 microM against CA XII, of 12.2-697 microM against CA XIII and of 10.1-49.8 microM against CA XIV, respectively. The different mechanisms of inhibition by phenols as compared to sulfonamides, and their diverse inhibition profile for these mammalian isozymes, makes this class of derivatives of great interest for the design of compounds with selectivity and/or specificity for some of the medicinal chemistry targets belonging to this enzyme family.


Bioorganic & Medicinal Chemistry | 2013

Synthesis and carbonic anhydrase inhibitory properties of sulfamides structurally related to dopamine

Kadir Aksu; Meryem Nar; Muhammet Tanc; Daniela Vullo; İlhami Gülçin; Süleyman Göksu; Ferhan Tümer; Claudiu T. Supuran

A series of novel sulfamides incorporating the dopamine scaffold were synthesized. Reaction of amines and tert-butyl-alcohol/benzyl alcohol in the presence of chlorosulfonyl isocyanate (CSI) afforded sulfamoyl carbamates, which were converted to the title compounds by treatment with trifluoroacetic acid or by palladium-catalyzed hydrogenolysis. Inhibition of six α-carbonic anhydrases (CAs, EC 4.2.1.1), that is, CA I, CA II, CA VA, CA IX, CA XII and CA XIV, and two β-CAs from Candida glabrata (CgCA) and Mycobacterium tuberculosis (Rv3588) with these sulfamides was investigated. All CA isozymes were inhibited in the low micromolar to nanomolar range by the dopamine sulfamide analogues. K(i)s were in the range of 0.061-1.822 μM for CA I, 1.47-2.94 nM for CA II, 2.25-3.34 μM for CA VA, 0.041-0.37 μM for CA IX, 0.021-1.52 μM for CA XII, 0.007-0.219 μM for CA XIV, 0.35-5.31 μM for CgCA and 0.465-4.29 μM for Rv3588. The synthesized sulfamides may lead to inhibitors targeting medicinally relevant CA isoforms with potential applications as antiepileptic, antiobesity antitumor agents or anti-infective.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2013

Inhibition of the alpha- and beta-carbonic anhydrases from the gastric pathogen Helycobacter pylori with anions

Alfonso Maresca; Daniela Vullo; Andrea Scozzafava; Claudiu T. Supuran

The gastric pathogen Helicobacter pylori encodes two carbonic anhydrases (CAs, EC 4.2.1.1), an α- and a β-class one, hpαCA and hpβCA, crucial for its survival in the acidic environment from the stomach. Sulfonamides, strong inhibitors of these enzymes, block the growth of the pathogen, in vitro and in vivo. Here we report the inhibition of the two H. pylori CAs with inorganic and complex anions and other molecules interacting with zinc proteins. hpαCA was inhibited in the low micromolar range by diethyldithiocarbamate, sulfamide, sulfamic acid, phenylboronic acid, and in the submillimolar one by cyanide, cyanate, hydrogen sulfide, divanadate, tellurate, perruthenate, selenocyanide, trithiocarbonate, iminodisulfonate. hpβCA generally showed a stronger inhibition with most of these anions, with several low micromolar and many submillimolar inhibitors detected. These inhibitors may be used as leads for developing anti-H. pylori agents with a diverse mechanism of action compared to clinically used antibiotics.

Collaboration


Dive into the Daniela Vullo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Yves Winum

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge