Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniele Bassi is active.

Publication


Featured researches published by Daniele Bassi.


Tree Genetics & Genomes | 2013

Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps

Iban Eduardo; Giorgiana Chietera; Raul Pirona; Igor Pacheco; Michela Troggio; Elisa Banchi; Daniele Bassi; Laura Rossini; Alberto Vecchietti; Carlo Pozzi

Volatile organic compounds (VOCs) in plants are involved in aroma and pest resistance. These compounds form a complex mixture whose composition is specific to species and often to varieties. Despite their importance as essential factors that determine peach fruit quality, understanding of molecular, genetic, and physiological mechanisms underlying aroma formation is limited. The aim of this study was the identification in peach of quantitative trait loci (QTLs) for fruit VOCs to understand their genetic basis using an F1 population of 126 seedlings deriving from the cross between “Bolero” (B) and “OroA” (O), two peach cultivars differing in their aroma profile. Dense single nucleotide polymorphism (SNP) and SSR maps covering the eight linkage groups of the peach genome were constructed by genotyping with the International Peach SNP Consortium peach SNP array v1, and data for 23 VOCs with high or unknown “odor activity value” were obtained by gas chromatography–mass spectrometry analysis of fruit essential oil in the years 2007 and 2008. A total of 72 QTLs were identified, most consistent in both years. QTLs were identified for the 23 VOCs studied, including three major QTLs for nonanal, linalool, and for p-menth-1-en-9-al stable in both years. Collocations between candidate genes and major QTLs were identified taking advantage of the peach genome sequence: genes encoding two putative terpene synthases and one lipoxygenase (Lox) might be involved in the biosynthesis of linalool and p-menth-1-en-9-al, and nonanal, respectively. Implications for marker-assisted selection and future research on the subject are discussed.


Journal of the Science of Food and Agriculture | 2010

Identification of key odor volatile compounds in the essential oil of nine peach accessions

Iban Eduardo; Giorgiana Chietera; Daniele Bassi; Laura Rossini; Alberto Vecchietti

BACKGROUND Volatile compounds, together with sugars and acids, are the main chemical species determining the characteristic aroma and flavor of food. In peach, more than 100 volatiles have been identified. RESULTS The essential oil of six peach and three nectarine accessions used in Italian breeding programs was obtained by steam distillation, and the volatiles were investigated. A total of 47 known volatiles, two unidentified compounds and nine hydrocarbons were identified, including 12 aldehydes, six alcohols, three acids, three esters, six terpenes, two phenylalanine derivates, two C(13) norisoprenoids, one ketone (C(9)) and 10 lactones. A wide variation in the number of volatiles and in their concentration was observed among the nine accessions. Twenty-one compounds presented odor activity values (OAVs) higher than 1 in at least one of the accessions and were therefore putatively considered as key odorants in the peach volatile composition. CONCLUSION This study reports the identification, quantification and potency, based on the OAVs, of the most important volatile compounds, along with fruit quality characteristics, of nine different peach/nectarine accessions and will help future peach volatile breeding programs for the selection of odor-rich accessions to be used in the development of new improved cultivars.


PLOS ONE | 2015

Whole-Genome Analysis of Diversity and SNP-Major Gene Association in Peach Germplasm.

Diego Micheletti; Maria Teresa Dettori; Sabrina Micali; Valeria Aramini; Igor Pacheco; Cassia Da Silva Linge; Stefano Foschi; Elisa Banchi; Teresa Barreneche; Bénédicte Quilot-Turion; Patrick Lambert; Thierry Pascal; Ignasi Iglesias; J. Carbó; Li-rong Wang; Ruijuan Ma; Xiongwei Li; Zhongshan Gao; Nelson Nazzicari; Michela Troggio; Daniele Bassi; Laura Rossini; Ignazio Verde; François Laurens; Pere Arús; Maria José Aranzana

Peach was domesticated in China more than four millennia ago and from there it spread world-wide. Since the middle of the last century, peach breeding programs have been very dynamic generating hundreds of new commercial varieties, however, in most cases such varieties derive from a limited collection of parental lines (founders). This is one reason for the observed low levels of variability of the commercial gene pool, implying that knowledge of the extent and distribution of genetic variability in peach is critical to allow the choice of adequate parents to confer enhanced productivity, adaptation and quality to improved varieties. With this aim we genotyped 1,580 peach accessions (including a few closely related Prunus species) maintained and phenotyped in five germplasm collections (four European and one Chinese) with the International Peach SNP Consortium 9K SNP peach array. The study of population structure revealed the subdivision of the panel in three main populations, one mainly made up of Occidental varieties from breeding programs (POP1OCB), one of Occidental landraces (POP2OCT) and the third of Oriental accessions (POP3OR). Analysis of linkage disequilibrium (LD) identified differential patterns of genome-wide LD blocks in each of the populations. Phenotypic data for seven monogenic traits were integrated in a genome-wide association study (GWAS). The significantly associated SNPs were always in the regions predicted by linkage analysis, forming haplotypes of markers. These diagnostic haplotypes could be used for marker-assisted selection (MAS) in modern breeding programs.


BMC Plant Biology | 2013

Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach

Raul Pirona; Iban Eduardo; Igor Pacheco; Cassia Da Silva Linge; Mara Miculan; Ignazio Verde; Stefano Tartarini; Luca Dondini; Giorgio Pea; Daniele Bassi; Laura Rossini

BackgroundMaturity date (MD) is a crucial factor for marketing of fresh fruit, especially those with limited shelf-life such as peach (Prunus persica L. Batsch): selection of several cultivars with differing MD would be advantageous to cover and extend the marketing season. Aims of this work were the fine mapping and identification of candidate genes for the major maturity date locus previously identified on peach linkage group 4. To improve genetic resolution of the target locus two F2 populations derived from the crosses Contender x Ambra (CxA, 306 individuals) and PI91459 (NJ Weeping) x Bounty (WxBy, 103 individuals) were genotyped with the Sequenom and 9K Illumina Peach Chip SNP platforms, respectively.ResultsRecombinant individuals from the WxBy F2 population allowed the localisation of maturity date locus to a 220 kb region of the peach genome. Among the 25 annotated genes within this interval, functional classification identified ppa007577m and ppa008301m as the most likely candidates, both encoding transcription factors of the NAC (NAM/ATAF1, 2/CUC2) family. Re-sequencing of the four parents and comparison with the reference genome sequence uncovered a deletion of 232 bp in the upstream region of ppa007577m that is homozygous in NJ Weeping and heterozygous in Ambra, Bounty and the WxBy F1 parent. However, this variation did not segregate in the CxA F2 population being the CxA F1 parent homozygous for the reference allele. The second gene was thus examined as a candidate for maturity date. Re-sequencing of ppa008301m, showed an in-frame insertion of 9 bp in the last exon that co-segregated with the maturity date locus in both CxA and WxBy F2 populations.ConclusionsUsing two different segregating populations, the map position of the maturity date locus was refined from 3.56 Mb to 220 kb. A sequence variant in the NAC gene ppa008301m was shown to co-segregate with the maturity date locus, suggesting this gene as a candidate controlling ripening time in peach. If confirmed on other genetic materials, this variant may be used for marker-assisted breeding of new cultivars with differing maturity date.


PLOS ONE | 2014

A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach.

Elisa Vendramin; Giorgio Pea; Luca Dondini; Igor Pacheco; Maria Teresa Dettori; Laura Gazza; Simone Scalabrin; Francesco Strozzi; Stefano Tartarini; Daniele Bassi; Ignazio Verde; Laura Rossini

Nectarines play a key role in peach industry; the fuzzless skin has implications for consumer acceptance. The peach/nectarine (G/g) trait was described as monogenic and previously mapped on chromosome 5. Here, the position of the G locus was delimited within a 1.1 cM interval (635 kb) based on linkage analysis of an F2 progeny from the cross ‘Contender’ (C, peach) x ‘Ambra’ (A, nectarine). Careful inspection of the genes annotated in the corresponding genomic sequence (Peach v1.0), coupled with variant discovery, led to the identification of MYB gene PpeMYB25 as a candidate for trichome formation on fruit skin. Analysis of genomic re-sequencing data from five peach/nectarine accessions pointed to the insertion of a LTR retroelement in exon 3 of the PpeMYB25 gene as the cause of the recessive glabrous phenotype. A functional marker (indelG) developed on the LTR insertion cosegregated with the trait in the CxA F2 progeny and was validated on a broad panel of genotypes, including all known putative donors of the nectarine trait. This marker was shown to efficiently discriminate between peach and nectarine plants, indicating that a unique mutational event gave rise to the nectarine trait and providing a useful diagnostic tool for early seedling selection in peach breeding programs.


Sensors | 2010

Evaluation of three electronic noses for detecting incipient wood decay.

Manuela Baietto; Alphus D. Wilson; Daniele Bassi; Francesco Ferrini

Tree assessment methodologies, currently used to evaluate the structural stability of individual urban trees, usually involve a visual analysis followed by measurements of the internal soundness of wood using various instruments that are often invasive, expensive, or inadequate for use within the urban environment. Moreover, most conventional instruments do not provide an adequate evaluation of decay that occurs in the root system. The intent of this research was to evaluate the possibility of integrating conventional tools, currently used for assessments of decay in urban trees, with the electronic nose–a new innovative tool used in diverse fields and industries for various applications such as quality control in manufacturing, environmental monitoring, medical diagnoses, and perfumery. Electronic-nose (e-nose) technologies were tested for the capability of detecting differences in volatile organic compounds (VOCs) released by wood decay fungi and wood from healthy and decayed trees. Three e-noses, based on different types of operational technologies and analytical methods, were evaluated independently (not directly compared) to determine the feasibility of detecting incipient decays in artificially-inoculated wood. All three e-nose devices were capable of discriminating between healthy and artificially-inoculated, decayed wood with high levels of precision and confidence. The LibraNose quartz microbalance (QMB) e-nose generally provided higher levels of discrimination of sample unknowns, but not necessarily more accurate or effective detection than the AromaScan A32S conducting polymer and PEN3 metal-oxide (MOS) gas sensor e-noses for identifying and distinguishing woody samples containing different agents of wood decay. However, the conducting polymer e-nose had the greater advantage for identifying unknowns from diverse woody sample types due to the associated software capability of utilizing prior-developed, application-specific reference libraries with aroma pattern-recognition and neural-net training algorithms.


Horticulture research | 2016

Sugars in peach fruit: a breeding perspective

Marco Cirilli; Daniele Bassi; Angelo Ciacciulli

The last decade has been characterized by a decrease in peach (Prunus persica) fruit consumption in many countries, foremost due to unsatisfactory quality. The sugar content is one of the most important quality traits perceived by consumers, and the development of novel peach cultivars with sugar-enhanced content is a primary objective of breeding programs to revert the market inertia. Nevertheless, the progress reachable through classical phenotypic selection is limited by the narrow genetic bases of peach breeding material and by the complex quantitative nature of the trait, which is deeply affected by environmental conditions and agronomical management. The development of molecular markers applicable in MAS or MAB has become an essential strategy to boost the selection efficiency. Despite the enormous advances in ‘omics’ sciences, providing powerful tools for plant genotyping, the identification of the genetic bases of sugar-related traits is hindered by the lack of adequate phenotyping methods that are able to address strong within-plant variability. This review provides an overview of the current knowledge of the metabolic pathways and physiological mechanisms regulating sugar accumulation in peach fruit, the main advances in phenotyping approaches and genetic background, and finally addressing new research priorities and prospective for breeders.


Tree Genetics & Genomes | 2014

Selecting with markers linked to the PPVres major QTL is not sufficient to predict resistance to Plum Pox Virus (PPV) in apricot

S. Decroocq; A. Chague; Patrick Lambert; G. Roch; J-M. Audergon; F. Geuna; R. Chiozzotto; Daniele Bassi; Luca Dondini; Stefano Tartarini; J. Salava; Boris Krška; F. Palmisano; I. Karayiannis; Véronique Decroocq

Sharka is one of the most serious viral diseases affecting stone fruit species and, in apricot, resistance to its viral agent, the Plum Pox Virus (PPV), is conferred by one major quantitative trait locus (QTL), named PPVres for PPV resistance. Previous studies indicated that PPV-resistant cultivars and breeding progenies can be selected by using a set of SSR markers (named PGS) targeting the PPVres locus. However, before these markers can be employed for marker-assisted selection, they were validated in a wide range of genetic backgrounds and environments. We used a total of 11 mapping populations issued from three distinct environments to confirm that this marker set located within the QTL adequately predicted PPV resistance. In this study, we show that selection of PPV-resistant material based only on markers co-localizing with the PPVres major locus is not fully reliable. Indeed, genotype-phenotype discrepancies were observed depending on the progeny and the PPV-resistant/susceptible parents. While most of the PPV-resistant individuals displayed the resistant alleles, a significant number of PPV-susceptible individuals showed the same resistant haplotype. An effect of the PPV strain used for phenotyping was also demonstrated. We thus hypothesize that the presence of other factors or genes involved in the mechanism of resistance to sharka in apricot could explain these unexpected results. Our work indicates that the current PGS marker set is not broadly applicable for MAS and that marker-assisted breeding based on the sole PPVres locus is not sufficient to unambiguously select PPV-resistant apricot cultivars.


Journal of Horticultural Science & Biotechnology | 2009

Linkage map saturation, construction, and comparison in four populations of Prunus

Eudald Illa; Patrick Lambert; B. Quilot; Jean-Marc Audergon; Elisabeth Dirlewanger; Werner Howad; L. Dondini; S. Tartarini; O. Lain; Raffaele Testolin; Daniele Bassi; Pere Arús

Summary One of the objectives of the ISAFRUIT Project was to perform genetic analyses in four populations of Prunus, two of peach (P. persica) and two of apricot (P. armeniaca), in order to identify major genes and quantitative trait loci (QTLs) for characters related to fruit quality. This required the construction of saturated marker maps in each of these populations. Marker maps were available for an intra-specific peach × peach F2, a BC2 peach × P. davidiana (using peach as the recurrent parent), and an apricot × apricot F1. We have further saturated these maps mainly with SSR (simple sequence repeat) markers. A new map, constructed uniquely from SSRs was prepared for a fourth apricot × apricot F1 population. Using anchor markers, we compared these four maps with the reference Prunus map, constructed using an almond × peach F2 population. As previously observed, conservation of synteny and co-linearity were the general rule, providing additional evidence of the high level of similarity between all Prunus genomes. Comparisons of genetic distances between the maps suggested that those involving similar genomes had higher levels of recombination than those with more distant genomes, particularly the inter-specific crosses.


The Scientific World Journal | 2012

Olive Fertility as Affected by Cross-Pollination and Boron

Anna Spinardi; Daniele Bassi

Self-compatibility of local olive (Olea europaea L.) accessions and of the cultivars “Frantoio” and “Leccino” was investigated in Garda Lake area, northern Italy. Intercompatibility was determined for “Casaliva,” “Frantoio,” and “Leccino,” as well as the effects of foliar Boron applications (0, 262, 525, or 1050 mg·L−1) applied about one week before anthesis on fruit set, shotberry set, and on in vitro pollen germination. Following self-pollination, fruit set was significantly lower and the occurrence of shot berries significantly higher than those obtained by open pollination. No significant effect of controlled cross-pollination over self-pollination on fruit set and shotberry set was detectable. B treatments increased significantly fruit set in “Frantoio” and “Casaliva” but not in “Leccino.” B sprays had no effect on shotberry set, suggesting that these parthenocarpic fruits did not strongly compete for resources allocation and did not take advantage of increased B tissue levels. Foliar B application enhanced in vitro pollen germination, and the optimal level was higher for pollen germination than for fruit set. Our results highlight the importance of olive cross pollination for obtaining satisfactory fruit set and the beneficial effect of B treatments immediately prior to anthesis, possibly by affecting positively the fertilisation process and subsequent plant source-sink relations linked to fruitlet retention.

Collaboration


Dive into the Daniele Bassi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thierry Pascal

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pere Arús

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Patrick Lambert

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria José Aranzana

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge