Daniele Caprioli
National Institute on Drug Abuse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniele Caprioli.
Neuropsychopharmacology | 2010
Andrea Bari; David Edward Harry Theobald; Daniele Caprioli; Adam C. Mar; Alex Aidoo-Micah; Jeffrey W. Dalley; Trevor W. Robbins
Depressed patients show cognitive deficits that may depend on an abnormal reaction to positive and negative feedback. The precise neurochemical mechanisms responsible for such cognitive abnormalities have not yet been clearly characterized, although serotoninergic dysfunction is frequently associated with depression. In three experiments described here, we investigated the effects of different manipulations of central serotonin (5-hydroxytryptamine, 5-HT) levels in rats performing a probabilistic reversal learning task that measures response to feedback. Increasing or decreasing 5-HT tone differentially affected behavioral indices of cognitive flexibility (reversals completed), reward sensitivity (win-stay), and reaction to negative feedback (lose-shift). A single low dose of the selective serotonin reuptake inhibitor citalopram (1 mg/kg) resulted in fewer reversals completed and increased lose-shift behavior. By contrast, a single higher dose of citalopram (10 mg/kg) exerted the opposite effect on both measures. Repeated (5 mg/kg, daily, 7 days) and subchronic (10 mg/kg, b.i.d., 5 days) administration of citalopram increased the number of reversals completed by the animals and increased the frequency of win-stay behavior, whereas global 5-HT depletion had the opposite effect on both indices. These results show that boosting 5-HT neurotransmission decreases negative feedback sensitivity and increases reward (positive feedback) sensitivity, whereas reducing it has the opposite effect. However, these effects depend on the nature of the manipulation used: acute manipulations of the 5-HT system modulate negative feedback sensitivity, whereas long-lasting treatments specifically affect reward sensitivity. These results parallel some of the findings in humans on effects of 5-HT manipulations and are relevant to hypotheses of altered response to feedback in depression.
Psychopharmacology | 2012
Anushka B. P. Fernando; Daina Economidou; David E. H. Theobald; Mu-Fa Zou; Amy Hauck Newman; Marcia Spoelder; Daniele Caprioli; Margarita Moreno; Lucia Hipόlito; Albert T. Aspinall; Trevor W. Robbins; Jeffrey W. Dalley
RationaleImpulsivity is associated with a number of psychiatric disorders, most notably attention deficit/hyperactivity disorder (ADHD). Drugs that augment catecholamine function (e.g. methylphenidate and the selective noradrenaline reuptake inhibitor atomoxetine) have clinical efficacy in ADHD, but their precise mechanism of action is unclear.ObjectiveThe objective of this study is to investigate the relative contribution of dopamine (DA) and noradrenaline (NA) to the therapeutic effects of clinically effective drugs in ADHD using rats selected for high impulsivity on the five-choice serial reaction time task (5CSRTT).MethodsWe examined the effects of direct and indirect DA and NA receptor agonists and selective DA and NA reuptake inhibitors in rats showing high and low levels of impulsivity on the 5CSRTT (designated high impulsive ‘HI’ and low impulsive ‘LI’, respectively). Drugs were administered by systemic injection in a randomized, counterbalanced manner.ResultsLow doses of quinpirole (a D2/D3 agonist) and sumanirole (a D2 agonist) selectively reduced impulsivity on the 5CSRTT, whilst higher doses resulted in increased omissions and slower response latencies. The NA reuptake inhibitor, atomoxetine, and the alpha-2 adrenoreceptor agonist, guanfacine, dose dependently decreased premature responding. The dopaminergic reuptake inhibitor GBR-12909 increased impulsivity, whereas the nonselective DA and NA reuptake inhibitor methylphenidate had no significant effect on impulsive responses in HI and LI rats.ConclusionsThese findings indicate that high impulsivity can be ameliorated in rats by drugs that mimic the effects of DA and NA, just as in ADHD, and that activation of D2/3 receptors selectively decreases high impulsivity on the 5CSRTT.
Biological Psychiatry | 2014
Valerie Voon; Michael A Irvine; Katherine Derbyshire; Yulia Worbe; Iris Lange; Sanja Abbott; Sharon Morein-Zamir; Robyn Dudley; Daniele Caprioli; Neil A. Harrison; Jonathan Wood; Jeffrey W. Dalley; Edward T. Bullmore; Jon E. Grant; Trevor W. Robbins
Background Premature responding is a form of motor impulsivity that preclinical evidence has shown to predict compulsive drug seeking but has not yet been studied in humans. We developed a novel translation of the task, based on the rodent 5-choice serial reaction time task, testing premature responding in disorders of drug and natural food rewards. Methods Abstinent alcohol- (n = 30) and methamphetamine-dependent (n = 23) subjects, recreational cannabis users (n = 30), and obese subjects with (n = 30) and without (n = 30) binge eating disorder (BED) were compared with matched healthy volunteers and tested on the premature responding task. Results Compared with healthy volunteers, alcohol- and methamphetamine-dependent subjects and cannabis users showed greater premature responding with no differences observed in obese subjects with or without BED. Current smokers exhibited greater premature responding versus ex-smokers and nonsmokers. Alcohol-dependent subjects also had lower motivation for explicit monetary incentives. A Motivation Index correlated negatively with alcohol use and binge eating severity. Conclusions Premature responding on a novel translation of a serial reaction time task was more evident in substance use disorders but not in obese subjects with or without BED. Lower motivation for monetary incentives linked alcohol use and binge eating severity. Our findings add to understanding the relationship between drug and natural food rewards.
Behavioural Brain Research | 2006
Sergio Scaccianoce; Paola Del Bianco; Giovanna Paolone; Daniele Caprioli; Antonella M.E. Modafferi; Paolo Nencini; Aldo Badiani
It is well known that housing conditions may alter several physiological and behavioral parameters. In this study, we have investigated whether a prolonged period of partial social isolation can modify central brain-derived neurotrophic (BDNF) concentrations. Male Sprague-Dawley rats were singly housed for 8 weeks before hippocampi, prefrontal cortices and striata were collected for BDNF determination. Compared to rats housed two per cage, isolated rats showed a significant reduction on BDNF protein concentrations in the hippocampus while no changes were observed in the other brain regions examined. Moreover, housing condition had no effect on basal plasma corticosterone. On the basis of the proposed etiological participation of reduced central BDNF concentrations in affective disorders, our results would candidate social isolation as a model for the study of antidepressant treatments.
European Journal of Neuroscience | 2013
Bianca Jupp; Daniele Caprioli; Niel Saigal; Ingrid Reverte; Saurav Shrestha; Paul Cumming; Barry J. Everitt; Trevor W. Robbins; Jeffrey W. Dalley
Accumulating evidence indicates that impulsivity, in its multiple forms, involves cortical and subcortical mechanisms and abnormal dopamine (DA) transmission. Although decreased DA D2/D3 receptor availability in the nucleus accumbens (NAcb) predicts trait‐like impulsivity in rats it is unclear whether this neurochemical marker extends to both the NAcb core (NAcbC) and shell (NAcbS) and whether markers for other neurotransmitter systems implicated in impulsivity such as serotonin (5‐HT), endogenous opioids and γ‐amino‐butyric acid (GABA) are likewise altered in impulsive rats. We therefore used autoradiography to investigate DA transporter (DAT), 5‐HT transporter (5‐HTT) and D1, D2/D3, μ‐opioid and GABA(A) receptor binding in selected regions of the prefrontal cortex and striatum in rats expressing low and high impulsive behaviour on the five‐choice serial reaction‐time task. High‐impulsive (HI) rats exhibited significantly lower binding for DAT and D2/D3 receptors in the NAcbS and for D1 receptors in the NAcbC compared with low‐impulsive (LI) rats. HI rats also showed significantly lower GABA(A) receptor binding in the anterior cingulate cortex. For all regions where receptor binding was altered in HI rats, binding was inversely correlated with impulsive responding on task. There were no significant differences in binding for 5‐HTT or μ‐opioid receptors in any of the regions investigated. These results indicate that altered D2/D3 receptor binding is localised to the NAcbS of trait‐like impulsive rats and is accompanied by reduced binding for DAT. Alterations in binding for D1 receptors in the NAcbC and GABA(A) receptors in the anterior cingulate cortex demonstrate additional markers and putative mechanisms underlying the expression of behavioural impulsivity.
Progress in Brain Research | 2016
Marco Venniro; Daniele Caprioli; Yavin Shaham
High rates of relapse to drug use during abstinence is a defining feature of drug addiction. In abstinent drug users, drug relapse is often precipitated by acute exposure to the self-administered drug, drug-associated cues, stress, as well as by short-term and protracted withdrawal symptoms. In this review, we discuss different animal models that have been used to study behavioral and neuropharmacological mechanisms of these relapse-related phenomena. In the first part, we discuss relapse models in which abstinence is achieved through extinction training, including the established reinstatement model, as well as the reacquisition and resurgence models. In the second part, we discuss recent animal models in which drug relapse is assessed after either forced abstinence (e.g., the incubation of drug craving model) or voluntary (self-imposed) abstinence achieved either by introducing adverse consequences to ongoing drug self-administration (e.g., punishment) or by an alternative nondrug reward using a discrete choice (drug vs. palatable food) procedure. We conclude by briefly discussing the potential implications of the recent developments of animal models of drug relapse after voluntary abstinence to the development of medications for relapse prevention.
The International Journal of Neuropsychopharmacology | 2015
Samuel A. Barnes; Stephen J. Sawiak; Daniele Caprioli; Bianca Jupp; Guido Buonincontri; Adam C. Mar; Michael K. Harte; P. C. Fletcher; Trevor W. Robbins; Jo C. Neill; Jeffrey W. Dalley
Background: N-methyl-d-aspartate receptor (NMDAR) dysfunction is thought to contribute to the pathophysiology of schizophrenia. Accordingly, NMDAR antagonists such as phencyclidine (PCP) are used widely in experimental animals to model cognitive impairment associated with this disorder. However, it is unclear whether PCP disrupts the structural integrity of brain areas relevant to the profile of cognitive impairment in schizophrenia. Methods: Here we used high-resolution magnetic resonance imaging and voxel-based morphometry to investigate structural alterations associated with sub-chronic PCP treatment in rats. Results: Sub-chronic exposure of rats to PCP (5mg/kg twice daily for 7 days) impaired sustained visual attention on a 5-choice serial reaction time task, notably when the attentional load was increased. In contrast, sub-chronic PCP had no significant effect on the attentional filtering of a pre-pulse auditory stimulus in an acoustic startle paradigm. Voxel-based morphometry revealed significantly reduced grey matter density bilaterally in the hippocampus, anterior cingulate cortex, ventral striatum, and amygdala. PCP-treated rats also exhibited reduced cortical thickness in the insular cortex. Conclusions: These findings demonstrate that sub-chronic NMDA receptor antagonism is sufficient to produce highly-localized morphological abnormalities in brain areas implicated in the pathogenesis of schizophrenia. Furthermore, PCP exposure resulted in dissociable impairments in attentional function.
Biological Psychiatry | 2014
Daniele Caprioli; Stephen J. Sawiak; Emiliano Merlo; David E. H. Theobald; Marcia Spoelder; Bianca Jupp; Valerie Voon; T. Adrian Carpenter; Barry J. Everitt; Trevor W. Robbins; Jeffrey W. Dalley
Background Pathological forms of impulsivity are manifest in a number of psychiatric disorders listed in DSM-5, including attention-deficit/hyperactivity disorder and substance use disorder. However, the molecular and cellular substrates of impulsivity are poorly understood. Here, we investigated a specific form of motor impulsivity in rats, namely premature responding, on a five-choice serial reaction time task. Methods We used in vivo voxel-based magnetic resonance imaging and ex vivo Western blot analyses to investigate putative structural, neuronal, and glial protein markers in low-impulsive (LI) and high-impulsive rats. We also investigated whether messenger RNA interference targeting glutamate decarboxylase 65/67 (GAD65/67) gene expression in the nucleus accumbens core (NAcbC) is sufficient to increase impulsivity in LI rats. Results We identified structural and molecular abnormalities in the NAcbC associated with motor impulsivity in rats. We report a reduction in gray matter density in the left NAcbC of high-impulsive rats, with corresponding reductions in this region of glutamate decarboxylase (GAD65/67) and markers of dendritic spines and microtubules. We further demonstrate that the experimental reduction of de novo of GAD65/67 expression bilaterally in the NAcbC is sufficient to increase impulsivity in LI rats. Conclusions These results reveal a novel mechanism of impulsivity in rats involving gamma aminobutyric acidergic and structural abnormalities in the NAcbC with potential relevance to the etiology and treatment of attention-deficit/hyperactivity disorder and related disorders.
Biological Psychiatry | 2009
Daniele Caprioli; Michele Celentano; Alessandro Dubla; Federica Lucantonio; Paolo Nencini; Aldo Badiani
BACKGROUND We have recently observed an unforeseen dissociation in the effect of environmental context on heroin versus cocaine self-administration in rats. Rats housed in the self-administration chambers (Residents) took more heroin than rats that were transferred to the self-administration chambers only for the test sessions (Nonresidents). The contrary was found for cocaine. The twofold aim of the present study was to investigate: 1) drug choice as a function of ambience in rats given access to both cocaine and heroin, and 2) ambience of choice for cocaine- versus heroin-taking in human addicts. METHODS Resident and Nonresident rats with double-lumen intrajugular catheters were trained to self-administer cocaine (400 microg/kg/infusion) and heroin (25 microg/kg/infusion) on alternate days and then given the opportunity to choose between the two drugs during seven daily sessions. In the human study, we asked heroin and cocaine abusers where they preferred to take these drugs. RESULTS Approximately 46.7% of Resident rats exhibited a preference for heroin over cocaine; 33.3% preferred cocaine, and 20% expressed no preference. In contrast, only 8.3% of Nonresident rats preferred heroin, whereas 66.7% preferred cocaine, and 25% expressed no preference. In the human study, 73% of co-abusers reported that they used heroin exclusively or mostly at home (22% used it outside the home), whereas only 25% reported using cocaine at home (67% took it outside their homes). CONCLUSIONS Environmental context plays an important role in drug choice in both humans and rats self-administering heroin and cocaine.
Neuroscience & Biobehavioral Reviews | 2012
Kanwar Virdee; Paul Cumming; Daniele Caprioli; Bianca Jupp; Axel Rominger; Franklin I. Aigbirhio; Tim D. Fryer; Patrick J. Riss; Jeffrey W. Dalley
Positron emission tomography (PET) provides dynamic images of the biodistribution of radioactive tracers in the brain. Through application of the principles of compartmental analysis, tracer uptake can be quantified in terms of specific physiological processes such as cerebral blood flow, cerebral metabolic rate, and the availability of receptors in brain. Whereas early PET studies in animal models of brain diseases were hampered by the limited spatial resolution of PET instruments, dedicated small-animal instruments now provide molecular images of rodent brain with resolution approaching 1mm, the theoretic limit of the method. Major applications of PET for brain research have consisted of studies of animal models of neurological disorders, notably Parkinsons disease (PD), Alzheimers disease (AD), and Huntingtons disease (HD), stroke, epilepsy and traumatic brain injury; these studies have particularly benefited from selective neurochemical lesion models (PD), and also transgenic rodent models (AD, HD). Due to their complex and uncertain pathophysiologies, corresponding models of neuropsychiatric disorders have proven more difficult to establish. Historically, there has been an emphasis on PET studies of dopamine transmission, as assessed with a range of tracers targeting dopamine synthesis, plasma membrane transporters, and receptor binding sites. However, notable recent breakthroughs in molecular imaging include the development of greatly improved tracers for subtypes of serotonin, cannabinoid, and metabotropic glutamate receptors, as well as noradrenaline transporters, amyloid-β and neuroinflammatory changes. This article reviews the considerable recent progress in preclinical PET and discusses applications relevant to a number of neurological and neuropsychiatric disorders in humans.