Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniele Daffonchio is active.

Publication


Featured researches published by Daniele Daffonchio.


Scientific Reports | 2015

Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects

Elena Gonella; Massimo Pajoro; Massimo Marzorati; Elena Crotti; Mauro Mandrioli; Marianna Pontini; Daniela Bulgari; Ilaria Negri; Luciano Sacchi; Bessem Chouaia; Daniele Daffonchio; Alberto Alma

Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.


Nature | 2009

Initial community evenness favours functionality under selective stress

Lieven Wittebolle; Massimo Marzorati; Lieven Clement; Annalisa Balloi; Daniele Daffonchio; Kim Heylen; Paul De Vos; Willy Verstraete; Nico Boon

Owing to the present global biodiversity crisis, the biodiversity–stability relationship and the effect of biodiversity on ecosystem functioning have become major topics in ecology. Biodiversity is a complex term that includes taxonomic, functional, spatial and temporal aspects of organismic diversity, with species richness (the number of species) and evenness (the relative abundance of species) considered among the most important measures. With few exceptions (see, for example, ref. 6), the majority of studies of biodiversity-functioning and biodiversity–stability theory have predominantly examined richness. Here we show, using microbial microcosms, that initial community evenness is a key factor in preserving the functional stability of an ecosystem. Using experimental manipulations of both richness and initial evenness in microcosms with denitrifying bacterial communities, we found that the stability of the net ecosystem denitrification in the face of salinity stress was strongly influenced by the initial evenness of the community. Therefore, when communities are highly uneven, or there is extreme dominance by one or a few species, their functioning is less resistant to environmental stress. Further unravelling how evenness influences ecosystem processes in natural and humanized environments constitutes a major future conceptual challenge.


Applied and Environmental Microbiology | 2004

Comparison of Different Primer Sets for Use in Automated Ribosomal Intergenic Spacer Analysis of Complex Bacterial Communities

Massimiliano Cardinale; Lorenzo Brusetti; Sara Borin; Anna Maria Puglia; Aurora Rizzi; E. Zanardini; Claudia Sorlini; Cesare Corselli; Daniele Daffonchio

ABSTRACT ITSF and ITSReub, constituting a new primer set designed for the amplification of the 16S-23S rRNA intergenic transcribed spacers, have been compared with primer sets consisting of 1406F and 23Sr (M. M. Fisher and E. W. Triplett, Appl. Environ. Microbiol. 65:4630-4636, 1999) and S-D-Bact-1522-b-S-20 and L-D-Bact-132-a-A-18 (L. Ranjard et al., Appl. Environ. Microbiol. 67:4479-4487, 2001), previously proposed for automated ribosomal intergenic spacer analysis (ARISA) of complex bacterial communities. An agricultural soil and a polluted soil, maize silage, goat milk, a small marble sample from the façade of the Certosa of Pavia (Pavia, Italy), and brine from a deep hypersaline anoxic basin in the Mediterranean Sea were analyzed with the three primer sets. The number of peaks in the ARISA profiles, the range of peak size (width of the profile), and the reproducibility of results were used as indices to evaluate the efficiency of the three primer sets. The overall data showed that ITSF and ITSReub generated the most informative (in term of peak number) and reproducible profiles and yielded a wider range of spacer sizes (134 to 1,387) than the other primer sets, which were limited in detecting long fragments. The minimum amount of DNA template and sensitivity in detection of minor DNA populations were evaluated with artificial mixtures of defined bacterial species. ITSF and ITSReub amplified all the bacteria at DNA template concentrations from 280 to 0.14 ng μl−1, while the other primer sets failed to detect the spacers of one or more bacterial strains. Although the primer set consisting of ITSF and ITSReub and that of S-D-Bact-1522-b-S-20 and L-D-Bact-132-a-A-18 showed similar sensitivities for the DNA of Allorhizobium undicula mixed with the DNA of other species, the S-D-Bact-1522-b-S-20 and L-D-Bact-132-a-A-18 primer set failed to detect the DNA of Pseudomonas stutzeri.


Environmental Microbiology | 2008

How to get more out of molecular fingerprints: practical tools for microbial ecology

Massimo Marzorati; Lieven Wittebolle; Nico Boon; Daniele Daffonchio; Willy Verstraete

Community-level molecular techniques are widely used in comparative microbial ecology to assess the diversity of microbial communities and their response to changing environments. These include among others denaturing and temperature gradient gel electrophoresis (DGGE/TGGE), single-strand conformation polymorphism (SSCP), length heterogeneity-PCR (LH-PCR), terminal-restriction fragment length polymorphism (tRFLP) and 16S rRNA gene clone libraries. The amount of data derived from these techniques available in literature is continuously increasing and the lack of a universal way to interpret the raw fingerprint itself makes it difficult to compare between different results. Taking the DGGE technique as an example, we propose a setting-independent theoretical interpretation of the DGGE pattern, based on a straightforward processing on three levels of analysis: (i) the range-weighted richness (Rr) reflecting the carrying capacity of the system, (ii) the dynamics (Dy) reflecting the specific rate of species coming to significance, and (iii) functional organization (Fo), defined through a relation between the structure of a microbial community and its functionality. These Rr, Dy and Fo values, each representing a score to describe a microbial community, can be plotted in a 3D graph. The latter represents a visual ecological interpretation of the initial raw fingerprinting pattern.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector

Guido Favia; Irene Ricci; Claudia Damiani; Noura Raddadi; Elena Crotti; Massimo Marzorati; Aurora Rizzi; Roberta Urso; Lorenzo Brusetti; Sara Borin; Diego Mora; Patrizia Scuppa; Luciano Pasqualini; Emanuela Clementi; Marco Genchi; Silvia Corona; Ilaria Negri; G. Grandi; Alberto Alma; L. Kramer; Fulvio Esposito; Claudio Bandi; Luciano Sacchi; Daniele Daffonchio

Here, we show that an α-proteobacterium of the genus Asaia is stably associated with larvae and adults of Anopheles stephensi, an important mosquito vector of Plasmodium vivax, a main malaria agent in Asia. Asaia bacteria dominate mosquito-associated microbiota, as shown by 16S rRNA gene abundance, quantitative PCR, transmission electron microscopy and in situ-hybridization of 16S rRNA genes. In adult mosquitoes, Asaia sp. is present in high population density in the female gut and in the male reproductive tract. Asaia sp. from An. stephensi has been cultured in cell-free media and then transformed with foreign DNA. A green fluorescent protein-tagged Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission. The larval gut and the male reproductive system were also colonized by the transformed Asaia sp. strain. As an efficient inducible colonizer of mosquitoes that transmit Plasmodium sp., Asaia sp. may be a candidate for malaria control.


Applied and Environmental Microbiology | 2000

Homoduplex and Heteroduplex Polymorphisms of the Amplified Ribosomal 16S-23S Internal Transcribed Spacers Describe Genetic Relationships in the “Bacillus cereus Group”

Daniele Daffonchio; Ameur Cherif; Sara Borin

ABSTRACT Bacillus anthracis, Bacillus cereus,Bacillus mycoides, Bacillus pseudomycoides,Bacillus thuringiensis, and Bacillus weihenstephanensis are closely related in phenotype and genotype, and their genetic relationship is still open to debate. The present work uses amplified 16S-23S internal transcribed spacers (ITS) to discriminate between the strains and species and to describe the genetic relationships within the “B. cereus group,” advantage being taken of homoduplex-heteroduplex polymorphisms (HHP) resolved by polyacrylamide gel electrophoresis and silver staining. One hundred forty-one strains belonging to the six species were investigated, and 73 ITS-HHP pattern types were distinguished by MDE, a polyacrylamide matrix specifically designed to resolve heteroduplex and single-strand conformation polymorphisms. The discriminating bands were confirmed as ITS by Southern hybridization, and the homoduplex or heteroduplex nature was identified by single-stranded DNA mung bean nuclease digestion. Several of the ITS-HHP types corresponded to specific phenotypes such as B. anthracis or serotypes ofB. thuringiensis. Unweighted pair group method arithmetic average cluster analysis revealed two main groups. One included B. mycoides, B. weihenstephanensis, and B. pseudomycoides. The second included B. cereus and B. thuringiensis, B. anthracis appeared as a lineage of B. cereus.


Nature | 2006

Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline

Daniele Daffonchio; Sara Borin; Tullio Brusa; L. Brusetti; P.W.J.J. van der Wielen; H. Bolhuis; Michail M. Yakimov; Giuseppe D'Auria; D. Marty; L. Giuliano; C. Tamburini; Terry J. McGenity; John E. Hallsworth; Andrea Sass; Kenneth N. Timmis; A. Tselepides; G.J. de Lange; Andreas Hübner; J. Thomson; S.P. Varnavas; F. Gasperoni; H.W. Gerber; Elisa Malinverno; C. Corselli

The chemical composition of the Bannock basin has been studied in some detail. We recently showed that unusual microbial populations, including a new division of Archaea (MSBL1), inhabit the NaCl-rich hypersaline brine. High salinities tend to reduce biodiversity, but when brines come into contact with fresher water the natural haloclines formed frequently contain gradients of other chemicals, including permutations of electron donors and acceptors, that may enhance microbial diversity, activity and biogeochemical cycling. Here we report a 2.5-m-thick chemocline with a steep NaCl gradient at 3.3 km within the water column betweeen Bannock anoxic hypersaline brine and overlying sea water. The chemocline supports some of the most biomass-rich and active microbial communities in the deep sea, dominated by Bacteria rather than Archaea, and including four major new divisions of Bacteria. Significantly higher metabolic activities were measured in the chemocline than in the overlying sea water and underlying brine; functional analyses indicate that a range of biological processes is likely to occur in the chemocline. Many prokaryotic taxa, including the phylogenetically new groups, were confined to defined salinities, and collectively formed a diverse, sharply stratified, deep-sea ecosystem with sufficient biomass to potentially contribute to organic geological deposits.


PLOS ONE | 2012

A drought resistance-promoting microbiome is selected by root system under desert farming

Ramona Marasco; Eleonora Rolli; Besma Ettoumi; Gianpiero Vigani; Francesca Mapelli; Sara Borin; Ayman F. Abou-Hadid; Usama Ahmed El-Behairy; Claudia Sorlini; Ameur Cherif; Graziano Zocchi; Daniele Daffonchio

Background Traditional agro-systems in arid areas are a bulwark for preserving soil stability and fertility, in the sight of “reverse desertification”. Nevertheless, the impact of desert farming practices on the diversity and abundance of the plant associated microbiome is poorly characterized, including its functional role in supporting plant development under drought stress. Methodology/Principal Findings We assessed the structure of the microbiome associated to the drought-sensitive pepper plant (Capsicum annuum L.) cultivated in a traditional Egyptian farm, focusing on microbe contribution to a crucial ecosystem service, i.e. plant growth under water deficit. The root system was dissected by sampling root/soil with a different degree of association to the plant: the endosphere, the rhizosphere and the root surrounding soil that were compared to the uncultivated soil. Bacterial community structure and diversity, determined by using Denaturing Gradient Gel Electrophoresis, differed according to the microhabitat, indicating a selective pressure determined by the plant activity. Similarly, culturable bacteria genera showed different distribution in the three root system fractions. Bacillus spp. (68% of the isolates) were mainly recovered from the endosphere, while rhizosphere and the root surrounding soil fractions were dominated by Klebsiella spp. (61% and 44% respectively). Most of the isolates (95%) presented in vitro multiple plant growth promoting (PGP) activities and stress resistance capabilities, but their distribution was different among the root system fractions analyzed, with enhanced abilities for Bacillus and the rhizobacteria strains. We show that the C. annuum rhizosphere under desert farming enriched populations of PGP bacteria capable of enhancing plant photosynthetic activity and biomass synthesis (up to 40%) under drought stress. Conclusions/Significance Crop cultivation provides critical ecosystem services in arid lands with the plant root system acting as a “resource island” able to attract and select microbial communities endowed with multiple PGP traits that sustain plant development under water limiting conditions.


International Journal of Systematic and Evolutionary Microbiology | 1998

PCR fingerprinting of whole genomes, the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis

Daniele Daffonchio; Sara Borin; Giuseppe Frova; Pier Luigi Manachini; Claudia Sorlini

Genomic diversity in 21 strains of Bacillus cereus and 10 strains of Bacillus licheniformis was investigated by random amplified polymorphic DNA (RAPD) analysis, which samples the whole genome, and by two PCR fingerprinting techniques sampling the hypervariable spacers between the conserved 16S and 23S rRNA genes of the rRNA gene operon (ITS-PCR) and regions between tRNA genes (tDNA-PCR). RAPD analysis showed a remarkable diversity among strains of B. cereus that was not observed with the rRNA and tRNA intergenic-spacer-targeted PCR, where all the strains showed practically identical fingerprints. A wide variability among the B. cereus strains was also observed in the plasmid profiles, suggesting that the genetic diversity within B. cereus species can arise from plasmid transfer. One contribution to the diversity detected by RAPD analysis was determined by the presence of large extrachromosomal elements that were amplified during RAPD analysis as shown by Southern hybridization experiments. In contrast to the strains of B. cereus, the 10 strains of B. licheniformis were grouped into two clusters which were the same with all the methods employed. The 16S rRNA genes were identical in all 10 strains when examined using single strand conformation polymorphism analysis after digestion with Alul and Rsal. From these data we hypothesize two different evolutionary schemes for the two species.


Applied and Environmental Microbiology | 2010

Acetic Acid Bacteria, Newly Emerging Symbionts of Insects

Elena Crotti; Aurora Rizzi; Bessem Chouaia; Irene Ricci; Guido Favia; Alberto Alma; Luciano Sacchi; Kostas Bourtzis; Mauro Mandrioli; Ameur Cherif; Claudio Bandi; Daniele Daffonchio

ABSTRACT Recent research in microbe-insect symbiosis has shown that acetic acid bacteria (AAB) establish symbiotic relationships with several insects of the orders Diptera, Hymenoptera, Hemiptera, and Homoptera, all relying on sugar-based diets, such as nectars, fruit sugars, or phloem sap. To date, the fruit flies Drosophila melanogaster and Bactrocera oleae, mosquitoes of the genera Anopheles and Aedes, the honey bee Apis mellifera, the leafhopper Scaphoideus titanus, and the mealybug Saccharicoccus sacchari have been found to be associated with the bacterial genera Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, and Saccharibacter and the novel genus Commensalibacter. AAB establish symbiotic associations with the insect midgut, a niche characterized by the availability of diet-derived carbohydrates and oxygen and by an acidic pH, selective factors that support AAB growth. AAB have been shown to actively colonize different insect tissues and organs, such as the epithelia of male and female reproductive organs, the Malpighian tubules, and the salivary glands. This complex topology of the symbiosis indicates that AAB possess the keys for passing through body barriers, allowing them to migrate to different organs of the host. Recently, AAB involvement in the regulation of innate immune system homeostasis of Drosophila has been shown, indicating a functional role in host survival. All of these lines of evidence indicate that AAB can play different roles in insect biology, not being restricted to the feeding habit of the host. The close association of AAB and their insect hosts has been confirmed by the demonstration of multiple modes of transmission between individuals and to their progeny that include vertical and horizontal transmission routes, comprising a venereal one. Taken together, the data indicate that AAB represent novel secondary symbionts of insects.

Collaboration


Dive into the Daniele Daffonchio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenzo Brusetti

Free University of Bozen-Bolzano

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge