Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniele Fattorini is active.

Publication


Featured researches published by Daniele Fattorini.


Environmental Pollution | 2015

Pollutants bioavailability and toxicological risk from microplastics to marine mussels.

Carlo Giacomo Avio; Stefania Gorbi; Massimo Milan; Maura Benedetti; Daniele Fattorini; Giuseppe d'Errico; Marianna Pauletto; Luca Bargelloni; Francesco Regoli

Microplastics represent a growing environmental concern for the oceans due to their potential of adsorbing chemical pollutants, thus representing a still unexplored source of exposure for aquatic organisms. In this study polyethylene (PE) and polystyrene (PS) microplastics were shown to adsorb pyrene with a time and dose-dependent relationship. Results also indicated a marked capability of contaminated microplastics to transfer this model PAH to exposed mussels Mytilus galloprovincialis; tissue localization of microplastics occurred in haemolymph, gills and especially digestive tissues where a marked accumulation of pyrene was also observed. Cellular effects included alterations of immunological responses, lysosomal compartment, peroxisomal proliferation, antioxidant system, neurotoxic effects, onset of genotoxicity; changes in gene expression profile was also demonstrated through a new DNA microarray platform. The study provided the evidence that microplastics adsorb PAHs, emphasizing an elevated bioavailability of these chemicals after the ingestion, and the toxicological implications due to responsiveness of several molecular and cellular pathways to microplastics.


Aquatic Toxicology | 2008

Contaminant accumulation and biomarker responses in caged mussels, Mytilus galloprovincialis, to evaluate bioavailability and toxicological effects of remobilized chemicals during dredging and disposal operations in harbour areas

Raffaella Bocchetti; Daniele Fattorini; Barbara Pisanelli; Simona Macchia; Lisa Oliviero; Fabiano Pilato; David Pellegrini; Francesco Regoli

Remobilization of chemicals from contaminated sediments is a major risk associated with dredging and disposal operations in harbour areas. In this work caged mussels, Mytilus galloprovincialis, were chosen as bioindicator organisms to reveal the impact and recovery of organisms from these activities in the harbour of Piombino (Tuscany, Italy) where approximately 100,000 m(3) of sediments were removed and disposed in a local confined disposal facility (CDF). Organisms were deployed before, during and after the end of operations, selecting sites differently impacted by these activities. Temporal changes in environmental bioavailability and biological effects of pollutants were assessed by integrating analyses of trace metals and polycyclic aromatic hydrocarbons (PAHs) accumulated in tissues of caged mussels with a wide array of biomarkers reflecting exposure to specific classes of pollutants and different levels of cellular unbalance or toxicity. Such biological responses included levels of metallothioneins, activity of acyl CoA oxidase (AOX) as a marker of peroxisome proliferation, oxidative stress biomarkers (content of glutathione, enzymatic activities of catalase, glutathione S-transferases, glutathione reductase, glutathione peroxidases), total oxyradical scavenging capacity (TOSC) toward peroxyl and hydroxyl radicals, lysosomal membrane stability and genotoxic effects measured as DNA strand breaks and frequency of micronuclei. Obtained results indicated that a general disturbance was already present in the whole harbour area and especially in the inner site before the beginning of operations, when caged mussels exhibited a significant accumulation of PAHs and Pb, lower TOSC values and higher levels of both lysosomal and genotoxic damages. Bioavailability of trace metals and PAHs markedly increased during dredging activities with values up to 40 microg/g for Pb and up to 2200 ng/g for PAHs in tissues of caged mussels, a significant inhibition of antioxidant efficiency and increase of oxidative damages. While bioavailability of trace metals returned to the pre-dredging values after the end of operations, the accumulation of PAHs, oxidative effects and genotoxic damages remained elevated in mussels caged in the inner area and in front of CDF. Overall this study confirmed the utility of caged mussels to assess the remobilization of chemicals from dredged sediments and the onset of potentially harmful biological effects.


Environmental Health Perspectives | 2006

Use of the Land Snail Helix aspersa as Sentinel Organism for Monitoring Ecotoxicologic Effects of Urban Pollution: An Integrated Approach

Francesco Regoli; Stefania Gorbi; Daniele Fattorini; Sara Tedesco; Alessandra Notti; Nicola Machella; Raffaella Bocchetti; Maura Benedetti; Francesco Piva

Atmospheric pollution from vehicular traffic is a matter of growing interest, often leading to temporary restrictions in urban areas. Although guidelines indicate limits for several parameters, the real toxicologic impacts remain largely unexplored in field conditions. In this study our aim was to validate an ecotoxicologic approach to evaluate both bioaccumulation and toxicologic effects caused by airborne pollutants. Specimens of the land snail Helix aspersa were caged in five sites in the urban area of Ancona, Italy. After 4 weeks, trace metals (cadmium, chromium, copper, iron, manganese, nickel, lead, and zinc) and polycyclic aromatic hydrocarbons (PAHs) were measured and these data integrated with the analyses of molecular and biochemical responses. Such biomarkers reflected the induction of detoxification pathways or the onset of cellular toxicity caused by pollutants. Biomarkers that correlated with contaminant accumulation included levels of metallothioneins, activity of biotransformation enzymes (ethoxyresorufin O-deethylase, ethoxycoumarin O-deethylase), and peroxisomal proliferation. More general responses were investigated as oxidative stress variations, including efficiency of antioxidant defenses (catalase, glutathione reductase, glutathione S-transferases, glutathione peroxidases, and total glutathione) and total oxyradical scavenging capacity toward peroxyl and hydroxyl radicals, onset of cellular damages (i.e., lysosomal destabilization), and loss of DNA integrity. Results revealed a marked accumulation of metals and PAHs in digestive tissues of organisms maintained in more traffic-congested sites. The contemporary appearance of several alterations confirmed the cellular reactivity of these chemicals with toxicologic effects of potential concern for human health. The overall results of this exploratory study suggest the utility of H. aspersa as a sentinel organism for biomonitoring the biologic impact of atmospheric pollution in urban areas.


Chemosphere | 2008

Seasonal, spatial and inter-annual variations of trace metals in mussels from the Adriatic sea: A regional gradient for arsenic and implications for monitoring the impact of off-shore activities

Daniele Fattorini; Alessandra Notti; Rossella Di Mento; A. M. Cicero; Massimo Gabellini; Aniello Russo; Francesco Regoli

Mussels are widely used as bioindicator organisms for monitoring chemical pollutants including trace metals. These elements are natural constituents in the marine environment and their basal concentrations in the organisms can be influenced by several environmental and biological factors. The aim of this work was to extend our knowledge on the natural variability of trace metals in mussels tissues, focusing on seasonal and inter-annual fluctuations in a coastal reference site of the Adriatic coast (Portonovo); a total of 39 samplings were performed during 5 years, providing an extended data-set for tissue levels of As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V and Zn. Concentrations of trace metals in mussels tissues revealed marked seasonal fluctuations with significant differences between various sampling years. Such fluctuations appeared mostly related to phytoplanctonic blooms and especially to reproductive cycle which exhibited a certain inter-annual shift of the gametogenesis period. Lower concentrations were measured in summer months for the majority of elements while a different seasonal cycle was observed for arsenic, not correlated with gonadic development, neither with other elements. Chemical speciation of arsenic was characterized to distinguish compounds of natural origin from those potentially reflecting an anthropogenic impact. Arsenobetaine and arsenocholine were always the predominant forms (up to 85% of total arsenic), while a significant increase of dimethylarsine and trimethylarsine oxide in spring (24% of total arsenic) might reflect the effect of phytoplanctonic bloom on both geochemistry and trophic transfer of this element. A significant inter-annual variability was observed for both the seasonal cycle and the range of values measured for all the elements, with particularly marked differences for arsenic, ranging from less than 10 to more than 40 microg/g in summer periods of different years. Data obtained on reference mussels were used to assess the impact of 41 off-shore platforms distributed along 5 nautical districts in the Northern and Central Adriatic Sea. Organisms sampled on these structures from 2001 to 2005 exhibited a certain enrichment of cadmium and zinc, probably associated to the use of anodic electrodes. Marked annual and geographical variations were measured for concentrations of arsenic in mussels of different platforms. However, the comparison with results of Portonovo, allowed to exclude the anthropogenic impact of exploitation activities and revealed a natural regional gradient of arsenic levels in mussels tissues associated to the changing influence of the Po river runoff on seawater salinity. In particular the higher concentrations measured in organisms sampled from platforms in the Central compared to Northern Adriatic confirmed a significant relationship between salinity and arsenic bioaccumulation, consistent with a role of arsenobetaine as an acquired osmolyte for mussels. The overall results confirmed the importance of natural variability when assessing the potential impact of anthropogenic activities.


Chemosphere | 2011

Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: a practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays.

Francesco Piva; Francesco Ciaprini; Fulvio Onorati; Maura Benedetti; Daniele Fattorini; Antonella Ausili; Francesco Regoli

Quality assessments are crucial to all activities related to removal and management of sediments. Following a multidisciplinary, weight of evidence approach, a new model is presented here for comprehensive assessment of hazards associated to polluted sediments. The lines of evidence considered were sediment chemistry, assessment of bioavailability, sub-lethal effects on biomarkers, and ecotoxicological bioassays. A conceptual and software-assisted model was developed with logical flow-charts elaborating results from each line of evidence on the basis of several chemical and biological parameters, normative guidelines or scientific evidence; the data are thus summarized into four specific synthetic indices, before their integration into an overall sediment hazard evaluation. This model was validated using European eels (Anguilla anguilla) as the bioindicator species, exposed under laboratory conditions to sediments from an industrial site, and caged under field conditions in two harbour areas. The concentrations of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and trace metals were much higher in the industrial compared to harbour sediments, and accordingly the bioaccumulation in liver and gills of exposed eels showed marked differences between conditions seen. Among biomarkers, significant variations were observed for cytochrome P450-related responses, oxidative stress biomarkers, lysosomal stability and genotoxic effects; the overall elaboration of these data, as those of standard ecotoxicological bioassays with bacteria, algae and copepods, confirmed a higher level of biological hazard for industrial sediments. Based on comparisons with expert judgment, the model presented efficiently discriminates between the various conditions, both as individual modules and as an integrated final evaluation, and it appears to be a powerful tool to support more complex processes of environmental risk assessment.


Environment International | 2012

A multidisciplinary weight of evidence approach for classifying polluted sediments: Integrating sediment chemistry, bioavailability, biomarkers responses and bioassays.

Maura Benedetti; Francesco Ciaprini; Francesco Piva; Fulvio Onorati; Daniele Fattorini; Alessandra Notti; Antonella Ausili; Francesco Regoli

Evaluation of chemical bioavailability and onset of biological alterations is fundamental to assess the hazard of environmental pollutants, particularly when associated to sediments which need to be removed. In the present work, five sediment samples were collected from the Venice Lagoon and data from sediment chemistry were integrated with those of bioaccumulation of chemicals in European eel (Anguilla anguilla) exposed under laboratory conditions, responses of a wide battery of biomarkers, and standardized ecotoxicological bioassays. The overall results were elaborated within a recently developed, software-assisted weight of evidence (WOE) model which provides synthetic indices for each of considered line of evidence (LOE), before a general evaluation of sediment hazard. Levels of chemicals in sediments were not particularly elevated when compared to sediment quality guidelines of Venice Protocol. On the other hand, bioavailability was evident in some samples for Cd, Cu, Zn and, especially, polycyclic aromatic hydrocarbons. The ecotoxicological approach provided further evidence on the biological and potentially harmful effects due to released contaminants, and oxidative-mediated responses appeared of primary importance in modulating sublethal responses and the onset of cellular alterations. Biomarkers variations were sensitive, and more evident variations included significant changes of cytochrome P450 biotransformation pathway, antioxidant responses, onset of oxidative damages, lysosomal membrane stability and genotoxic effects. The results obtained from the battery of bioassays indicated that responses measured at organism level were in general accordance but less marked compared to the onset of sublethal changes measured through biomarkers. Overall this study revealed differences when comparing evaluations obtained from different LOEs, confirming the importance of considering synergistic effects between chemicals in complex mixtures. Compared to a qualitative pass-fail approach toward normative values, the proposed WOE model allowed a quantitative characterization of sediment hazard and a better discrimination of on the basis of various types of chemical and biological data.


Environmental Toxicology and Chemistry | 2004

ARSENIC SPECIATION IN TISSUES OF THE MEDITERRANEAN POLYCHAETE SABELLA SPALLANZANII

Daniele Fattorini; Francesco Regoli

Arsenic toxicity is strictly related to its chemical form and marine organisms are known to accumulate this element mostly as organoarsenic nontoxic molecules. Contrasting with this general trend, the presence of moderately toxic to toxic arsenic compounds recently has been reported in some polychaete species, showing a completely different profile of represented chemical species. In this work the presence and distribution of arsenic were characterized in the Mediterranean polychaete Sabella spallanzanii, by analyzing total levels in different tissues and subcellular fractions and the occurrence of various arsenical compounds. Further investigations on arsenic accumulation in S. spallanzanii were based on the capability of this species to regenerate the branchial crown both in laboratory and field conditions. Though basal levels of arsenic in the thorax were similar to those already described for most polychaetes and invertebrate species, branchial crown revealed a remarkable accumulation of this element with concentrations higher than 1000 microg/g. Arsenic mainly was localized in a soluble form within the cytosol and dimethyl-arsinate (DMA) appeared the most represented chemical species. Experiments on bioaccumulation of arsenic in regenerating branchial crowns confirmed the environmental origin of this element and the time-dependent appearance of various As compounds suggested a methylation pathway more than a degradation process for the elevated content of DMA. The accumulation of this moderately toxic compound in the more vulnerable tissues of the polychaete might represent an antipredatory strategy, as indicated by some feeding trials where fish ate the thorax but rejected the branchial crowns.


Environmental Toxicology and Chemistry | 2005

Interactions between metabolism of trace metals and xenobiotic agonists of the aryl hydrocarbon receptor in the antarctic fish Trematomus bernacchii: Environmental perspectives

Francesco Regoli; Marco Nigro; Maura Benedetti; Stefania Gorbi; Carlo Pretti; Pier Giovanni Gervasi; Daniele Fattorini

Although Antarctica is a pristine environment, organisms are challenged with contaminants either released locally or transported from industrialized regions through atmospheric circulation and marine food webs. Organisms from Terra Nova Bay also are exposed to a natural enrichment of cadmium, but to our knowledge, whether such environmental conditions influence biological responses to anthropogenic pollutants has never been considered. In the present study, the Antarctic rock cod (Trematomus bernacchii) was exposed to model chemicals, including polycyclic aromatic hydrocarbons (benzo[a]pyrene), persistent organic pollutants (2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]), cadmium, and a combination of cadmium and TCDD. Analyzed parameters included chemical bioaccumulation, activity, and levels of biotransformation enzymes (cytochrome P4501A); metallothioneins and the efficiency of the antioxidant system measured as individual defenses (catalase, glutathione, glutathione reductase, glutathione S-transferases, and glutathione peroxidases); and total scavenging capacity toward peroxyl and hydroxyl radicals. Reciprocal interactions between metabolism of inorganic and organic pollutants were demonstrated. Dioxin enhanced the accumulation of cadmium, probably stored within proliferating endoplasmic reticulum, and cadmium suppressed the inducibility of cytochrome P4501A, allowing us to hypothesize a posttranscriptional mechanism as the depletion of heme group availability. Clear evidence of oxidative perturbation was provided by the inhibition of antioxidants and enhanced sensitivity to oxyradical toxicity in fish exposed to organic chemicals. Exposure to cadmium revealed counteracting responses of glutathione metabolism; however, these responses did not prevent a certain loss of antioxidant capacity toward peroxyl radicals. The pattern of antioxidant responses exhibited by fish coexposed to cadmium and TCDD was more similar to that observed for cadmium than to that observed for TCDD. The overall results suggest that elevated natural levels of cadmium in Antarctic organisms from Terra Nova Bay can limit biotransformation capability of polycyclic (halogenated) hydrocarbons, thus influencing the bioaccumulation and biological effects of these chemicals in key sentinel species.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009

Effects of arsenic (As) exposure on the antioxidant status of gills of the zebrafish Danio rerio (Cyprinidae)

Juliane Ventura-Lima; Micheli Rosa de Castro; Daiane da Silva Acosta; Daniele Fattorini; Francesco Regoli; Leandro M. de Carvalho; Denise Bohrer; Laura A. Geracitano; Daniela M. Barros; Luis Fernando Marins; Rosane Souza da Silva; Carla Denise Bonan; Maurício Reis Bogo; José M. Monserrat

In fishes, arsenic (As) is absorbed via the gills and is capable of causing disturbance to the antioxidant system. The objective of present study was to evaluate antioxidant responses after As exposure in gills of zebrafish (Danio rerio, Cyprinidae). Fish were exposed for 48 h to three concentration of As, including the highest As concentration allowed by current Brazilian legislation (10 microg As/L). A control group was exposed to tap water (pH 8.0; 26 degrees C; 7.20 mg O(2)/L). As exposure resulted in (1) an increase (p<0.05) of glutathione (GSH) levels after exposure to 10 and 100 microg As/L, (2) an increase of the glutamate cysteine ligase (GCL) activity in the same concentrations (p<0.05), (3) no significant differences in terms of glutathione reductase, glutathione-S-transferase and catalase activities; (4) a significantly lower (p<0.05) oxygen consumption after exposure to 100 microg As/L; (4) no differences in terms of oxygen reactive species generation and lipid peroxidation content (p>0,05). In the gills, only inorganic As was detected. Overall, it can be concluded that As affected the antioxidant responses increasing GCL activity and GSH levels, even at concentration considered safe by Brazilian legislation.


Chemistry and Ecology | 2006

Characterization of arsenic content in marine organisms from temperate, tropical, and polar environments

Daniele Fattorini; Alessandra Notti; Francesco Regoli

Arsenic is a widely distributed element which occurs in several chemical forms in the marine environment. Inorganic arsenic mediates the most toxic effects and predominates in sea water and sediments, while organisms generally accumulate non-toxic organic forms to concentrations probably reflecting species-specific characteristics in arsenic metabolism. This work represents an additional contribution to our knowledge on natural levels and chemical speciation of arsenic in marine organisms; basal concentrations were characterized in several species (bivalves, crustaceans, and fishes) from different environments (polar, temperate, and tropical latitudes), and results revealed an elevated variability with values ranging from less than 5 to about 200 μg g−1. No significant effects were observed as a function of the geographical area, with the only exception of crustaceans always showing more elevated arsenic concentrations in Mediterranean species (about 45–110 μg g−1) compared with tropical species (lower than 30 μg g−1). Chemical speciation of arsenic was investigated in representative species from the three studied taxa; the predominance of organic forms confirmed the general tendency of marine organisms to bioaccumulate non-toxic arsenic compounds, probably resulting from a detoxification pathway.

Collaboration


Dive into the Daniele Fattorini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maura Benedetti

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Stefania Gorbi

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Alessandra Notti

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raffaella Bocchetti

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

José M. Monserrat

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Juliane Ventura-Lima

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe d'Errico

Marche Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge