Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniele Lantagne is active.

Publication


Featured researches published by Daniele Lantagne.


International Journal of Environmental Health Research | 2010

Effect of production variables on microbiological removal in locally-produced ceramic filters for household water treatment.

Daniele Lantagne; Molly Klarman; Ally Mayer; Kelsey Preston; Julie Napotnik; Kristen L. Jellison

Diarrhoeal diseases cause an estimated 1.87 million child deaths per year. Point-of-use filtration using locally made ceramic filters improves microbiological quality of stored drinking water and prevents diarrhoeal disease. Scaling-up ceramic filtration is inhibited by lack of universal quality control standards. We investigated filter production variables to determine their affect on microbiological removal during 5–6 weeks of simulated normal use. Decreases in the clay:sawdust ratio and changes in the burnable decreased effectiveness of the filter. Method of silver application and shape of filter did not impact filter effectiveness. A maximum flow rate of 1.7 l−hr was established as a potential quality control measure for one particular filter to ensure 99% (2- log10) removal of total coliforms. Further research is indicated to determine additional production variables associated with filter effectiveness and develop standardized filter production procedures prior to scaling-up.


American Journal of Tropical Medicine and Hygiene | 2012

Evaluating the Sustained Health Impact of Household Chlorination of Drinking Water in Rural Haiti

Eric Harshfield; Daniele Lantagne; Anna Turbes; Clair Null

The Jolivert Safe Water for Families program has sold sodium hypochlorite solution (chlorine) and conducted household visits in rural Haiti since 2002. To assess the impact of the program on diarrheal disease, in 2010 we conducted a survey and water quality testing in 201 program participants and 425 control households selected at random. Fifty-six percent of participants (versus 10% of controls) had free chlorine residuals between 0.2 and 2.0 mg/L, indicating correct water treatment. Using intention-to-treat analysis, we found that significantly fewer children < 5 in participant households had an episode of diarrhea in the previous 48 hours (32% versus 52%; P < 0.001) with 59% reduced odds (odds ratio = 0.41, 95% confidence interval = 0.21–0.79). Treatment-on-treated estimates of the odds of diarrhea indicated larger program effects for participants who met more stringent verifications of participation. Diarrheal disease reduction in this long-term program was comparable with that seen in short-term randomized, controlled interventions, suggesting that household chlorination can be an effective long-term water treatment strategy.


Science of The Total Environment | 2016

Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases

Jonathan Mellor; Karen Levy; Julie B. Zimmerman; Mark Elliott; Jamie Bartram; Thomas Clasen; Rebecca Dillingham; Joseph N. S. Eisenberg; Richard L. Guerrant; Daniele Lantagne; James R. Mihelcic; Kara L. Nelson

Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies.


American Journal of Tropical Medicine and Hygiene | 2010

Disinfection By-Product Formation and Mitigation Strategies in Point-of-Use Chlorination with Sodium Dichloroisocyanurate in Tanzania

Daniele Lantagne; Fred Cardinali; Ben C. Blount

Almost a billion persons lack access to improved drinking water, and diarrheal diseases cause an estimated 1.87 million deaths per year. Sodium dichloroisocyanurate (NaDCC) tablets are widely recommended for household water treatment to reduce diarrhea. Because NaDCC is directly added to untreated water sources, concerns have been raised about the potential health impact of disinfection by-products. This study investigated trihalomethane (THM) production in water from six sources used for drinking (0.6-888.5 nephelometric turbidity units) near Arusha, Tanzania. No sample collected at 1, 8, and 24 hours after NaDCC addition exceeded the World Health Organization guideline values for either individual or total THMs. Ceramic filtration, sand filtration, cloth filtration, and settling and decanting were not effective mitigation strategies to reduce THM formation. Chlorine residual and THM formation were not significantly different in NaDCC and sodium hypochlorite treatment. Household chlorination of turbid and non-turbid waters did not create THM concentrations that exceeded health risk guidelines.


Journal of Water and Health | 2010

Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries

Kelsey Preston; Daniele Lantagne; Nadine Kotlarz; Kristen L. Jellison

Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.


Environmental Science & Technology | 2015

Silver Dissolution and Release from Ceramic Water Filters

Anjuliee M. Mittelman; Daniele Lantagne; Justine Rayner; Kurt D. Pennell

Application of silver nanoparticles (nAg) or silver nitrate (AgNO3) has been shown to improve the microbiological efficacy of ceramic water filters used for household water treatment. Silver release, however, can lead to undesirable health effects and reduced filter effectiveness over time. The objectives of this study were to evaluate the contribution of nanoparticle detachment, dissolution, and cation exchange to silver elution, and to estimate silver retention under different influent water chemistries. Dissolved silver (Ag(+)) and nAg release from filter disks painted with 0.03 mg/g casein-coated nAg or AgNO3 were measured as a function of pH (5-9), ionic strength (1-50 mM), and cation species (Na(+), Ca(2+), Mg(2+)). Silver elution was controlled by dissolution as Ag(+) and subsequent cation exchange reactions regardless of the applied silver form. Effluent silver levels fell below the drinking water standard (0.1 mg/L) after flushing with 30-42 pore volumes of pH 7, 10 mM NaNO3 at pH 7. When the influent water was at pH 5, contained divalent cations or 50 mM NaNO3, silver concentrations were 5-10 times above the standard. Our findings support regular filter replacement and indicate that saline, hard, or acidic waters should be avoided to minimize effluent silver concentrations and preserve silver treatment integrity.


American Journal of Tropical Medicine and Hygiene | 2014

Household Water Treatment Uptake during a Public Health Response to a Large Typhoid Fever Outbreak in Harare, Zimbabwe

Maho Imanishi; Patience F. Kweza; Rachel B. Slayton; Tanaka Urayai; Odrie Ziro; Wellington Mushayi; Monica Francis-Chizororo; Lazarus R. Kuonza; Tracy Ayers; Molly M. Freeman; Emmaculate Govore; Clemence Duri; Prosper Chonzi; Sekesai Mtapuri-Zinyowera; Portia Manangazira; Peter H. Kilmarx; Eric D. Mintz; Daniele Lantagne

Locally manufactured sodium hypochlorite (chlorine) solution has been sold in Zimbabwe since 2010. During October 1, 2011-April 30, 2012, 4,181 suspected and 52 confirmed cases of typhoid fever were identified in Harare. In response to this outbreak, chlorine tablets were distributed. To evaluate household water treatment uptake, we conducted a survey and water quality testing in 458 randomly selected households in two suburbs most affected by the outbreak. Although 75% of households were aware of chlorine solution and 85% received chlorine tablets, only 18% had reportedly treated stored water and had the recommended protective level of free chlorine residuals. Water treatment was more common among households that reported water treatment before the outbreak, and those that received free tablets during the outbreak (P < 0.01), but was not associated with chlorine solution awareness or use before the outbreak (P > 0.05). Outbreak response did not build on pre-existing prevention programs.


Journal of Water and Health | 2009

Turbidity and chlorine demand reduction using locally available physical water clarification mechanisms before household chlorination in developing countries

Nadine Kotlarz; Daniele Lantagne; Kelsey Preston; Kristen L. Jellison

Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.9 million deaths per year. The Safe Water System (SWS) is a proven household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of three locally available water clarification mechanisms-cloth filtration, settling/decanting and sand filtration-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. All three mechanisms reduced turbidity (cloth filtration -1-60%, settling/decanting 78-88% and sand filtration 57-99%). Sand filtration (P=0.002) and settling/decanting (P=0.004), but not cloth filtration (P=0.30), were effective at reducing chlorine demand compared with controls. Recommendations for implementing organizations based on these results are discussed.


Journal of Water and Health | 2015

Accuracy, precision, usability, and cost of free chlorine residual testing methods

Anna Murray; Daniele Lantagne

Chlorine is the most widely used disinfectant worldwide, partially because residual protection is maintained after treatment. This residual is measured using colorimetric test kits varying in accuracy, precision, training required, and cost. Seven commercially available colorimeters, color wheel and test tube comparator kits, pool test kits, and test strips were evaluated for use in low-resource settings by: (1) measuring in quintuplicate 11 samples from 0.0-4.0 mg/L free chlorine residual in laboratory and natural light settings to determine accuracy and precision; (2) conducting volunteer testing where participants used and evaluated each test kit; and (3) comparing costs. Laboratory accuracy ranged from 5.1-40.5% measurement error, with colorimeters the most accurate and test strip methods the least. Variation between laboratory and natural light readings occurred with one test strip method. Volunteer participants found test strip methods easiest and color wheel methods most difficult, and were most confident in the colorimeter and least confident in test strip methods. Costs range from 3.50-444 USD for 100 tests. Application of a decision matrix found colorimeters and test tube comparator kits were most appropriate for use in low-resource settings; it is recommended users apply the decision matrix themselves, as the appropriate kit might vary by context.


American Journal of Tropical Medicine and Hygiene | 2013

Effective Use of Household Water Treatment and Safe Storage in Response to the 2010 Haiti Earthquake.

Daniele Lantagne; Thomas Clasen

When water supplies are compromised during an emergency, responders often recommend household water treatment and safe storage (HWTS) methods, such as boiling or chlorination. We evaluated the near- and longer-term impact of chlorine and filter products distributed shortly after the 2010 earthquake in Haiti. HWTS products were deemed as effective to use if they actually improved unsafe household drinking water to internationally accepted microbiological water quality standards. The acute emergency survey (442 households) was conducted within 8 weeks of emergency onset; the recovery survey (218 households) was conducted 10 months after onset. Effective use varied by HWTS product (from 8% to 63% of recipients in the acute phase and from 0% to 46% of recipients in the recovery phase). Higher rates of effective use were associated with programs that were underway in Haiti before the emergency, had a plan at initial distribution for program continuation, and distributed products with community health worker support and a safe storage container.

Collaboration


Dive into the Daniele Lantagne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge