Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniele Orsucci is active.

Publication


Featured researches published by Daniele Orsucci.


Neurology | 2013

Phenotypic heterogeneity of the 8344A.G mtDNA "MERRF" mutation

Michelangelo Mancuso; Daniele Orsucci; Corrado Angelini; Enrico Bertini; Valerio Carelli; Giacomo P. Comi; Carlo Minetti; Maurizio Moggio; Tiziana Mongini; Serenella Servidei; Paola Tonin; Antonio Toscano; Graziella Uziel; Claudio Bruno; Elena Caldarazzo Ienco; Massimiliano Filosto; Costanza Lamperti; Diego Martinelli; Isabella Moroni; Olimpia Musumeci; Elena Pegoraro; Dario Ronchi; Filippo M. Santorelli; Donato Sauchelli; Mauro Scarpelli; Monica Sciacco; Marco Spinazzi; Maria Lucia Valentino; Liliana Vercelli; Massimo Zeviani

Objectives: Myoclonic epilepsy with ragged-red fibers (MERRF) is a rare mitochondrial syndrome, mostly caused by the 8344A>G mitochondrial DNA mutation. Most of the previous studies have been based on single case/family reports or series with few patients. The primary aim of this study was the characterization of a large cohort of patients with the 8344A>G mutation. The secondary aim was revision of the previously published data. Methods: Retrospective, database-based study (Nation-wide Italian Collaborative Network of Mitochondrial Diseases) and systematic revision. Results: Forty-two patients carrying the mutation were identified. The great majority did not have full-blown MERRF syndrome. Myoclonus was present in 1 of 5 patients, whereas myopathic signs and symptoms, generalized seizures, hearing loss, eyelid ptosis, and multiple lipomatosis represented the most common clinical features. Some asymptomatic mutation carriers have also been observed. Myoclonus was more strictly associated with ataxia than generalized seizures in adult 8344A>G subjects. Considering all of the 321 patients so far available, including our dataset and previously published cases, at the mean age of approximately 35 years, the clinical picture was characterized by the following signs/symptoms, in descending order: myoclonus, muscle weakness, ataxia (35%–45% of patients); generalized seizures, hearing loss (25%–34.9%); cognitive impairment, multiple lipomatosis, neuropathy, exercise intolerance (15%–24.9%); and increased creatine kinase levels, ptosis/ophthalmoparesis, optic atrophy, cardiomyopathy, muscle wasting, respiratory impairment, diabetes, muscle pain, tremor, migraine (5%–14.9%). Conclusions: Our results showed higher clinical heterogeneity than commonly thought. Moreover, MERRF could be better defined as a myoclonic ataxia rather than a myoclonic epilepsy.


Journal of Neurology | 2010

Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation

Michelangelo Mancuso; Daniele Orsucci; Annalisa LoGerfo; Anna Rocchi; Lucia Petrozzi; Claudia Nesti; Fabio Galetta; Gino Santoro; Luigi Murri; Gabriele Siciliano

Mitochondrial diseases are due to impairment of the mitochondrial respiratory chain. A plausible pathogenic mechanism leading to cellular dysfunction and phenotypic expression is oxidative stress, but there are surprisingly few clinical studies on this subject. Glutathione (GSH) deficiency has been reported in mitochondrial diseases, and the biosynthesis of glutathione depends on cysteine availability. We have examined oxidative stress biomarkers [advanced oxidation protein products (AOPP) and ferric reducing antioxidant power (FRAP)] in blood samples from 27 patients and 42 controls. AOPP levels were greater in patients than in controls (P value <0.00001). Therefore, we performed a double-blind cross-over study to evaluate if 30-day supplementation with a whey-based cysteine donor could modify these markers, reduce lactate concentration during aerobic exercise, or enhance muscular strength and quality of life. Treatment did not modify lactate concentration, clinical scale (MRC) or quality of life (SF-36), but significantly reduced oxidative stress levels. Our findings reinforce the notions that in mitochondrial diseases oxidative stress is important and can be reduced by administration of a cysteine donor. Oxidative stress biomarkers may be useful to detect redox imbalance in mitochondrial diseases and to provide non-invasive tools to monitor disease status.


Current Medicinal Chemistry | 2011

Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues.

Daniele Orsucci; Michelangelo Mancuso; E. Caldarazzo Ienco; Annalisa LoGerfo; Gabriele Siciliano

Coenzyme Q10 is a small electron carrier of the respiratory chain with antioxidant properties, widely used for the treatment of mitochondrial disorders. Mitochondrial diseases are neuromuscular disorders caused by impairment of the respiratory chain and increased generation of reactive oxygen species. Coenzyme Q10 supplementation is fundamental in patients with primary coenzyme Q10 deficiency. Furthermore, coenzyme Q10 and its analogues, idebenone and mitoquinone (or MitoQ), have been also used in the treatment of other neurogenetic/neurodegenerative disorders. In Friedreich ataxia idebenone may reduce cardiac hypertrophy and, at higher doses, also improve neurological function. These compounds may also play a potential role in other conditions which have been linked to mitochondrial dysfunction, such as Parkinson disease, Huntington disease, amyotrophic lateral sclerosis and Alzheimer disease. This review introduces mitochondrial disorders and Friedreich ataxia as two paradigms of the tight links existing between oxidative stress, respiratory chain dysfunction and neurodegeneration, and focuses on current and emerging therapeutic uses of coenzyme Q10 and idebenone in neurology.


Cns & Neurological Disorders-drug Targets | 2009

Neuroprotective effects of tetracyclines: molecular targets, animal models and human disease.

Daniele Orsucci; Valeria Calsolaro; Michelangelo Mancuso; Gabriele Siciliano

Tetracyclines are a class of antibiotics which could play a therapeutic role in several neurological disorders. Minocycline, extensively studied in animal models, decreased the size of ischaemic and haemorrhagic infarct. In Parkinsons disease models minocycline protected the nigrostriatal pathway, and in Huntingtons disease and motoneuron disease models delayed the progression of disease extending the lifespan. Finally, in human diseases such as stroke and multiple sclerosis tetracyclines seem to play some neuroprotective role. The main biological effects of tetracyclines are the inhibition of microglial activation, the attenuation of apoptosis, and the suppression of reactive oxygen species production. These mechanisms are involved in the pathogenesis of several neurodegenerative disorders. Several reports showed that minocycline reduced mitochondrial Ca(2+) uptake, stabilized mitochondrial membranes, and reduced the release into the cytoplasm of apoptotic factors. Other effects include up-regulation of mitochondrial bcl-2 (an antiapoptotic protein), direct scavenging of reactive oxygen species, and inhibition of mitogen activated protein kinases. It is still unclear which of these mechanisms plays the pivotal role in neuroprotective properties of tetracyclines. The anti-apoptotic effect of tetracyclines probably involves the mitochondrion. The major target for tetracyclines in neurodegeneration could lie within the complex network that links mitochondria, oxidative stress, poly (ADP-ribose) polymerase-1 and apoptosis. Here, we review the neuroprotective effects of tetracyclines in animal models and in human disease, and we focus on their possible mechanism(s) of action, with special regard to mitochondrial dysfunction in neurodegeneration.


Journal of Neurology | 2014

The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender?

Michelangelo Mancuso; Daniele Orsucci; Corrado Angelini; Enrico Bertini; Valerio Carelli; Giacomo P. Comi; Alice Donati; Carlo Minetti; Maurizio Moggio; Tiziana Mongini; Serenella Servidei; Paola Tonin; Antonio Toscano; Graziella Uziel; Claudio Bruno; Elena Caldarazzo Ienco; Massimiliano Filosto; Costanza Lamperti; Michela Catteruccia; Isabella Moroni; Olimpia Musumeci; Elena Pegoraro; Dario Ronchi; Filippo M. Santorelli; Donato Sauchelli; Mauro Scarpelli; Monica Sciacco; Maria Lucia Valentino; Liliana Vercelli; Massimo Zeviani

Abstract The m.3243A>G “MELAS” (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) mutation is one of the most common point mutations of the mitochondrial DNA, but its phenotypic variability is incompletely understood. The aim of this study was to revise the phenotypic spectrum associated with the mitochondrial m.3243A>G mutation in 126 Italian carriers of the mutation, by a retrospective, database-based study (“Nation-wide Italian Collaborative Network of Mitochondrial Diseases”). Our results confirmed the high clinical heterogeneity of the m.3243A>G mutation. Hearing loss and diabetes were the most frequent clinical features, followed by stroke-like episodes. “MIDD” (maternally-inherited diabetes and deafness) and “PEO” (progressive external ophthalmoplegia) are nosographic terms without any real prognostic value, because these patients may be even more prone to the development of multisystem complications such as stroke-like episodes and heart involvement. The “MELAS” acronym is convincing and useful to denote patients with histological, biochemical and/or molecular evidence of mitochondrial disease who experience stroke-like episodes. Of note, we observed for the first time that male gender could represent a risk factor for the development of stroke-like episodes in Italian m.3243A>G carriers. Gender effect is not a new concept in mitochondrial medicine, but it has never been observed in MELAS. A better elucidation of the complex network linking mitochondrial dysfunction, apoptosis, estrogen effects and stroke-like episodes may hold therapeutic promises.


Sleep Medicine | 2012

Oxidative stress biomarkers in patients with untreated obstructive sleep apnea syndrome.

Michelangelo Mancuso; Enrica Bonanni; Annalisa LoGerfo; Daniele Orsucci; Michelangelo Maestri; Lucia Chico; M Fabbrini; Gabriele Siciliano; Luigi Murri

BACKGROUND The pathogenic role of oxidative stress in obstructive sleep apnea syndrome (OSAS) is still a matter of debate, with different studies obtaining contrasting results. METHODS The aim of the present study was to evaluate three well-known markers of oxidative stress (advanced oxidation protein products [AOPP], ferric reducing antioxidant power [FRAP], and total glutathione [GSH]) in a cohort of 41 untreated patients with a new diagnosis of OSAS. RESULTS We observed that OSAS patients showed increased protein oxidative damage and impaired antioxidant defenses. Patients with more severe OSAS had a lower total antioxidant capability. Preliminary data on a subgroup of patients (n=7) treated with CPAP show a significant increment of the FRAP values (P<0.005). CONCLUSIONS Our findings indicate that such oxidative stress markers may be useful to detect and monitor redox imbalance in OSAS. Moreover, FRAP might be a new useful biomarker to monitor in vivo the oxidative response to CPAP therapy.


Journal of Molecular Neuroscience | 2011

POLG1-related and other "mitochondrial Parkinsonisms": an overview.

Daniele Orsucci; Elena Caldarazzo Ienco; Michelangelo Mancuso; Gabriele Siciliano

Mitochondrial dysfunction has been implicated in the pathogenesis of sporadic, idiopathic Parkinson disease. In some cases, mitochondrial DNA primary genetic abnormalities, or more commonly, secondary rearrangements due to polymerase gamma (POLG1) gene mutation, can directly cause parkinsonism. The case of a Parkinson disease patient with some signs or symptoms suggestive of mitochondrial disease (i.e., ptosis, myopathy, neuropathy) is a relatively common event in the neurological practice. Mitochondrial parkinsonisms do not have distinctive features allowing an immediate diagnosis, and a negative family history does not rule out a possible diagnosis of mitochondrial disorder. In this article, we do not revise the mitochondrial hypothesis of sporadic, idiopathic Parkinson disease, extensively discussed elsewhere, but we review POLG1-related parkinsonism and other well-defined forms of “mitochondrial parkinsonisms”, with mtDNA mutations or rearrangements. Lastly, we try to introduce a possible diagnostic approach for patients with parkinsonism and suspected mitochondrial disorder.


International Journal of Alzheimer's Disease | 2009

Mitochondria, Cognitive Impairment, and Alzheimer's Disease

Michelangelo Mancuso; V. Calsolaro; Daniele Orsucci; C. Carlesi; A. Choub; S. Piazza; Gabriele Siciliano

To date, the beta amyloid (Aβ) cascade hypothesis remains the main pathogenetic model of Alzheimers disease (AD), but its role in the majority of sporadic AD cases is unclear. The “mitochondrial cascade hypothesis” could explain many of the biochemical, genetic, and pathological features of sporadic AD. Somatic mutations in mitochondrial DNA (mtDNA) could cause energy failure, increased oxidative stress, and accumulation of Aβ, which in a vicious cycle reinforce the mtDNA damage and the oxidative stress. Despite the evidence of mitochondrial dysfunction in AD, no causative mutations in the mtDNA have been detected so far. Indeed, results of studies on the role of mtDNA haplogroups in AD are controversial. In this review we discuss the role of the mitochondria, and especially of the mtDNA, in the cascade of events leading to neurodegeneration, dementia, and AD.


Current Molecular Medicine | 2009

Diagnostic Approach to Mitochondrial Disorders: the Need for a Reliable Biomarker

Michelangelo Mancuso; Daniele Orsucci; Fabio Coppedè; C. Nesti; Anna Choub; Gabriele Siciliano

Mitochondrial diseases (MD) are disorders caused by impairment of the mitochondrial electron transport chain (ETC). Phenotypes are polymorphous and may range from pure myopathy to multisystemic disorders. The genetic defect can be located on mitochondrial or nuclear DNA. The ETC is needed for oxidative phosphorylation (which provides the cell with the most efficient energetic outcome in terms of ATP production), and consists of five multimeric protein complexes located in the inner mitochondrial membrane. The ETC also requires cytochrome c and a small electron carrier, coenzyme Q10. One of the pathogenic mechanisms of ETC disorders is excessive accumulation of reactive oxygen species (ROS). Mitochondrial dysfunction and oxidative stress appear to have a strong impact also on the pathogenesis of neurodegenerative diseases. At present, diagnosis of MD requires a complex approach: measurement of serum lactate, exercise testing, electromyography, magnetic resonance spectroscopy, muscle histology and enzymology, and genetic analysis. Biomarkers are molecules associated with biological processes or regulatory mechanisms. A reliable biomarker for the screening or diagnosis of MD is still needed. In this paper we review the diagnostic approach to MD, from serum lactate to other blood and urinary markers, from muscular biopsy to imaging studies, and we highlight some potentially interesting perspectives in this field.


Human Genomics | 2008

Mitochondrial DNA sequence variation and neurodegeneration

Michelangelo Mancuso; Massimiliano Filosto; Daniele Orsucci; Gabriele Siciliano

Mitochondria, the powerhouse of the cell, play a critical role in several metabolic processes and apoptotic pathways. Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Moreover, there is a long history of investigations on mitochondria aimed at identifying genetic markers relating to ageing and neurodegenerative diseases. In this review, some of the major neurodegenerative disorders are highlighted and the role of mitochondrial haplogroups in the pathogenetic cascade leading to these diseases is discussed.

Collaboration


Dive into the Daniele Orsucci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge