Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniele Provenzano is active.

Publication


Featured researches published by Daniele Provenzano.


Infection and Immunity | 2008

Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine.

Xiaowen R. Bina; Daniele Provenzano; Nathalie Nguyen; James E. Bina

ABSTRACT Vibrio cholerae is a gram-negative human intestinal pathogen that causes the diarrheal disease cholera. Humans acquire cholera by ingesting V. cholerae-contaminated food or water. Upon ingestion, V. cholerae encounters several barriers to colonization, including bile acid toxicity and antimicrobial products of the innate immune system. In many gram-negative bacteria, resistance to the antimicrobial effects of these products is mediated by RND (resistance-nodulation-division) family efflux systems. In this study we tested the hypothesis that the V. cholerae RND efflux systems are required for antimicrobial resistance and virulence. The six V. cholerae genes encoding RND efflux pumps were deleted from the genome of the O1 El Tor strain N16961, resulting in the generation of 14 independent RND deletion mutants, including one RND-null strain. Determination of the antimicrobial susceptibilities of the mutants revealed that the RND efflux systems were responsible for resistance to multiple antimicrobial compounds, including bile acids, antimicrobial peptides, and antibiotics. VexB (VC0164) was found to be the RND efflux pump primarily responsible for the resistance of V. cholerae to multiple antimicrobial compounds in vitro. In contrast, VexD (VC1757) and VexK (VC1673) encoded efflux pumps with detergent-specific substrate specificities that were redundant with VexB. A strain lacking VexB, VexD, and VexK was attenuated in the infant mouse model, and its virulence factor production was unaffected. In contrast, a V. cholerae RND-null strain produced significantly less cholera toxin and fewer toxin-coregulated pili than the wild type and was unable to colonize the infant mouse. The decreased virulence factor production in the RND-null strain was linked to reduced transcription of tcpP and toxT. Our findings show that the V. cholerae RND efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse.


Infection and Immunity | 2005

Identification and Characterization of Human Surfactant Protein A Binding Protein of Mycoplasma pneumoniae

T. R. Kannan; Daniele Provenzano; Jo Rae Wright; Joel B. Baseman

ABSTRACT Mycoplasma pneumoniae infections represent a major primary cause of human respiratory diseases, exacerbate other respiratory disorders, and are associated with extrapulmonary pathologies. Cytadherence is a critical step in mycoplasma colonization, aided by a network of mycoplasma adhesins and cytadherence accessory proteins which mediate binding to host cell receptors. Furthermore, the respiratory mucosa is enriched with extracellular matrix components, including surfactant proteins, fibronectin, and mucin, which provide additional in vivo targets for mycoplasma parasitism. In this study we describe interactions between M. pneumoniae and human surfactant protein-A (hSP-A). Initially, we found that viable M. pneumoniae cells bound to immobilized hSP-A in a dose- and calcium (Ca2+)-dependent manner. Mild trypsin treatment of intact mycoplasmas reduced binding markedly (80 to 90%) implicating a surface-associated mycoplasma protein(s). Using hSP-A-coupled Sepharose affinity chromatography and polyacrylamide gel electrophoresis, we identified a 65-kDa hSP-A binding protein of M. pneumoniae. The presence of Ca2+ enhanced binding of the 65-kDa protein to hSP-A, which was reduced by the divalent cation-chelating agent, EDTA. The 65-kDa hSP-A binding protein of M. pneumoniae was identified by sequence analysis as a novel protein (MPN372) possessing a putative S1-like subunit of pertussis toxin at the amino terminus (amino acids 1 to 226), with the remaining amino acids (227 to 591) exhibiting no homology with other subunits of pertussis toxin, other known toxins, or any reported proteins. Recombinant MPN372 (MPN372) bound to hSP-A in a dose-dependent manner, which was markedly reduced by preincubation with mouse recombinant MPN372 antisera. Also, adherence of viable M. pneumoniae cells to hSP-A was inhibited by recombinant MPN372 antisera, demonstrating that MPN372, a previously designated hypothetical protein, is surface exposed and mediates mycoplasma attachment to hSP-A.


Nature Communications | 2014

The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition

Daniel Unterweger; Sarah T. Miyata; Verena Bachmann; Teresa M. Brooks; Travis Mullins; Benjamin Kostiuk; Daniele Provenzano; Stefan Pukatzki

Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over 200 serogroups with differing pathogenic potential. Only strains that express the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) are capable of pandemic spread of cholera diarrhoea. Regardless, all V. cholerae strains sequenced to date harbour genes for the type VI secretion system (T6SS) that translocates effectors into neighbouring eukaryotic and prokaryotic cells. Here we report that the effectors encoded within these conserved gene clusters differ widely among V. cholerae strains, and that immunity proteins encoded immediately downstream from the effector genes protect their host from neighbouring bacteria producing corresponding effectors. As a consequence, strains with matching effector-immunity gene sets can coexist, while strains with different sets compete against each other. Thus, the V. cholerae T6SS contributes to the competitive behaviour of this species.


Archives of Microbiology | 2006

Characterization of the Vibrio cholerae vexAB and vexCD efflux systems

James E. Bina; Daniele Provenzano; Chunmei Wang; Xiaowen R. Bina; John J. Mekalanos

Vibrio cholerae is an important human pathogen that causes the diarrheal disease cholera. Colonization of the human host is dependent upon coordinated expression of several virulence factors in response to as yet unknown environmental cues. Bile acids have been implicated in the in vitro regulation of several V. cholerae genes, including those involved in motility, chemotaxis, outer membrane protein production, and virulence factor production. Bile is toxic to bacteria and colonization of the intestinal tract is dependent upon bacterial resistance to bile acids. We have identified and characterized two bile-regulated RND-family efflux systems, named here vexAB and vexCD, that are involved in V. cholerae bile resistance. Mutational analysis revealed that the vexAB system is responsible for in vitro intrinsic resistance of V. cholerae to multiple antimicrobial compounds, including bile acids. In contrast, the vexCD efflux system was specific for certain bile acids and detergents and functioned in conjunction with the vexAB system to provide V. cholerae with high-level bile resistance. Mutants containing deletion of vexB, vexD, and vexB–vexD were able to efficiently colonize the infant mouse suggesting that these efflux systems were dispensable for V. cholerae growth in the small intestines of infant mice.


PLOS ONE | 2012

Constitutive Type VI Secretion System Expression Gives Vibrio cholerae Intra- and Interspecific Competitive Advantages

Daniel Unterweger; Maya Kitaoka; Sarah T. Miyata; Verena Bachmann; Teresa M. Brooks; Jessica Moloney; Oscar Abraham Sosa; David Silva; Jorge Durán-González; Daniele Provenzano; Stefan Pukatzki

The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae – the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria) and a eukaryote (the social amoeba Dictyostelium discoideum). Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.


Microbiology and Immunology | 2006

The ABCs (Antibody, B Cells, and Carbohydrate Epitopes) of Cholera Immunity: Considerations for an Improved Vaccine

Daniele Provenzano; Pavol Kováč; William F. Wade

Cholera, a diarrheal disease, is known for explosive epidemics that can quickly kill thousands. Endemic cholera is a seasonal torment that also has a significant mortality. Not all nations with extensive rural communities can achieve the required infrastructure or behavioral changes to prevent epidemic or endemic cholera. For some communities, a single‐dose cholera vaccine that protects those at risk is the most efficacious means to reduce morbidity and mortality. It is clear that our understanding of what a protective cholera immune response is has not progressed at the rate our understanding of the pathogenesis and molecular biology of cholera infection has. This review addresses V. cholerae lipopolysaccharide (LPS)‐based immunogens because LPS is the only immunogen proven to induce protective antibody in humans. We discuss the role of anti‐LPS antibodies in protection from cholera, the importance and the potential role of B cell subsets in protection that is based on their anatomical location and the intrinsic antigen‐receptor specificity of various subsets is introduced.


Soft Matter | 2013

The extracellular polysaccharide Pel makes the attachment of P. aeruginosa to surfaces symmetric and short-ranged

Benjamin Cooley; Travis Thatcher; Sara M. Hashmi; Guillaume L'Her; Henry H. Le; Daniel Hurwitz; Daniele Provenzano; Ahmed Touhami; Vernita Gordon

Biofilms are surface-mounted, multicellular communities of microbes. Biofilms are often associated with chronic infections that resist treatment, evade the immune system, and damage host tissue. An essential characteristic of the biofilm state is that constituent organisms are bound in a polymeric matrix. This matrix gives the system spatial structure and clusters bacteria near each other, facilitating intercellular interactions. The Pseudomonas aeruginosa strain PAO1 is widely studied as a model biofilm-forming organism. The polymeric matrix of PAO1 biofilms is dominated by two bacteria-produced extracellular polymers, Pel and Psl. We use a combination of optical and atomic force microscopy to examine the roles of these polymers in very early biofilm development. In agreement with other researchers, we find that Psl mediates strong attachment to a glass surface. We find that Pel alone can mediate some attachment, but not as permanent as that mediated by Psl. Unexpectedly, we find that Pel promotes symmetric attachment, in the form of rod-shaped bacteria lying down flat on the surface, and that the presence of Pel makes attachment forces more short-ranged than they are with Psl alone. We suggest that these effects may result from synergistic interactions of Pel with the Psl polymeric matrix.


Journal of Visualized Experiments | 2013

Rapid Protocol for Preparation of Electrocompetent Escherichia coli and Vibrio cholerae

Miguel F. Gonzales; Teresa M. Brooks; Stefan Pukatzki; Daniele Provenzano

Electroporation has become a widely used method for rapidly and efficiently introducing foreign DNA into a wide range of cells. Electrotransformation has become the method of choice for introducing DNA into prokaryotes that are not naturally competent. Electroporation is a rapid, efficient, and streamlined transformation method that, in addition to purified DNA and competent bacteria, requires commercially available gene pulse controller and cuvettes. In contrast to the pulsing step, preparation of electrocompetent cells is time consuming and labor intensive involving repeated rounds of centrifugation and washes in decreasing volumes of sterile, cold water, or non-ionic buffers of large volumes of cultures grown to mid-logarithmic phase of growth. Time and effort can be saved by purchasing electrocompetent cells from commercial sources, but the selection is limited to commonly employed E. coli laboratory strains. We are hereby disseminating a rapid and efficient method for preparing electrocompetent E. coli, which has been in use by bacteriology laboratories for some time, can be adapted to V. cholerae and other prokaryotes. While we cannot ascertain whom to credit for developing the original technique, we are hereby making it available to the scientific community.


Scientific Reports | 2017

Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae

Paul C. Kirchberger; Daniel Unterweger; Daniele Provenzano; Stefan Pukatzki; Yan Boucher

Type VI secretion systems (T6SS) enable bacteria to engage neighboring cells in contact-dependent competition. In Vibrio cholerae, three chromosomal clusters each encode a pair of effector and immunity genes downstream of those encoding the T6SS structural machinery for effector delivery. Different combinations of effector-immunity proteins lead to competition between strains of V. cholerae, which are thought to be protected only from the toxicity of their own effectors. Screening of all publically available V. cholerae genomes showed that numerous strains possess long arrays of orphan immunity genes encoded in the 3′ region of their T6SS clusters. Phylogenetic analysis reveals that these genes are highly similar to those found in the effector-immunity pairs of other strains, indicating acquisition by horizontal gene transfer. Extensive genomic comparisons also suggest that successive addition of effector-immunity gene pairs replaces ancestral effectors, yet retains the cognate immunity genes. The retention of old immunity genes perhaps provides protection against nearby kin bacteria in which the old effector was not replaced. This mechanism, combined with frequent homologous recombination, is likely responsible for the high diversity of T6SS effector-immunity gene profiles observed for V. cholerae and closely related species.


Frontiers in Microbiology | 2013

Vibrio cholerae as a predator: lessons from evolutionary principles

Stefan Pukatzki; Daniele Provenzano

Diarrheal diseases are the second-most common cause of death among children under the age of five worldwide. Cholera alone, caused by the marine bacterium Vibrio cholerae, is responsible for several million cases and over 120,000 deaths annually. When contaminated water is ingested, V. cholerae passes through the gastric acid barrier, penetrates the mucin layer of the small intestine, and adheres to the underlying epithelial lining. V. cholerae multiplies rapidly, secretes cholera toxin, and exits the human host in vast numbers during diarrheal purges. How V. cholerae rapidly reaches such high numbers during each purge is not clearly understood. We propose that V. cholerae employs its bactericidal type VI secretion system to engage in intraspecies and intraguild predation for nutrient acquisition to support rapid growth and multiplication.

Collaboration


Dive into the Daniele Provenzano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed Touhami

The University of Texas Rio Grande Valley

View shared research outputs
Top Co-Authors

Avatar

Benjamin Cooley

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Travis Thatcher

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Vernita Gordon

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge