Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniele Rubert Nogueira is active.

Publication


Featured researches published by Daniele Rubert Nogueira.


Biomaterials | 2013

In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles

Daniele Rubert Nogueira; Lorena Tavano; Montserrat Mitjans; Lourdes Pérez; Maria Rosa Infante; M.P. Vinardell

Nanoparticles with pH-sensitive behavior may enhance the success of chemotherapy in many cancers by efficient intracellular drug delivery. Here, we investigated the effect of a bioactive surfactant with pH-sensitive properties on the antitumor activity and intracellular behavior of methotrexate-loaded chitosan nanoparticles (MTX-CS-NPs). NPs were prepared using a modified ionotropic complexation process, in which was included the surfactant derived from N(α),N(ε)-dioctanoyl lysine with an inorganic lithium counterion. The pH-sensitive behavior of NPs allowed accelerated release of MTX in an acidic medium, as well as membrane-lytic pH-dependent activity, which facilitated the cytosolic delivery of endocytosed materials. Moreover, our results clearly proved that MTX-CS-NPs were more active against the tumor HeLa and MCF-7 cell lines than the free drug. The feasibilty of using NPs to target acidic tumor extracellular pH was also shown, as cytotoxicity against cancer cells was greater in a mildly acidic environment. Finally, the combined physicochemical and pH-sensitive properties of NPs generally allowed the entrapped drug to induce greater cell cycle arrest and apoptotic effects. Therefore, our overall results suggest that pH-sensitive MTX-CS-NPs could be potentially useful as a carrier system for tumor and intracellular drug delivery in cancer therapy.


Acta Biomaterialia | 2011

The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.

Daniele Rubert Nogueira; Montserrat Mitjans; Maria Rosa Infante; M.P. Vinardell

Surfactants are among the most versatile and widely used excipients in pharmaceuticals. This versatility, together with their pH-responsive membrane-disruptive activity and low toxicity, could also enable their potential application in drug delivery systems. Five anionic lysine-based surfactants which differ in the nature of their counterion were studied. Their capacity to disrupt the cell membrane was examined under a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model for endosomal membranes. The surfactants showed pH-sensitive hemolytic activity and improved kinetics at the endosomal pH range. Low concentrations resulted in negligible hemolysis at physiological pH and high membrane lytic activity at pH 5.4, which is in the range characteristic of late endosomes. With increasing concentration, the surfactants showed an enhanced capacity to lyse cell membranes, and also caused significant membrane disruption at physiological pH. This observation indicates that, at high concentrations, surfactant behavior is independent of pH. The mechanism of surfactant-mediated membrane destabilization was addressed, and scanning electron microscopy studies were also performed to evaluate the effects of the compounds on erythrocyte morphology as a function of pH. The in vitro cytotoxicity of the surfactants was assessed by MTT and NRU assays with the 3T3 cell line. The influence of different types of counterion on hemolytic activity and the potential applications of these surfactants in drug delivery are discussed. The possibility of using pH-sensitive surfactants for endosome disruption could hold great promise for intracellular drug delivery systems in future therapeutic applications.


International Journal of Pharmaceutics | 2011

Comparative sensitivity of tumor and non-tumor cell lines as a reliable approach for in vitro cytotoxicity screening of lysine-based surfactants with potential pharmaceutical applications.

Daniele Rubert Nogueira; Montserrat Mitjans; M. Rosa Infante; M. Pilar Vinardell

Surfactants are used as additives in topical pharmaceuticals and drug delivery systems. The biocompatibility of amino acid-based surfactants makes them highly suitable for use in these fields, but tests are needed to evaluate their potential toxicity. Here we addressed the sensitivity of tumor (HeLa, MCF-7) and non-tumor (3T3, 3T6, HaCaT, NCTC 2544) cell lines to the toxic effects of lysine-based surfactants by means of two in vitro endpoints (MTT and NRU). This comparative assay may serve as a reliable approach for predictive toxicity screening of chemicals prior to pharmaceutical applications. After 24-h of cell exposure to surfactants, differing toxic responses were observed. NCTC 2544 and 3T6 cell lines were the most sensitive, while both tumor cells and 3T3 fibroblasts were more resistant to the cytotoxic effects of surfactants. IC(50)-values revealed that cytotoxicity was detected earlier by MTT assay than by NRU assay, regardless of the compound or cell line. The overall results showed that surfactants with organic counterions were less cytotoxic than those with inorganic counterions. Our findings highlight the relevance of the correct choice and combination of cell lines and bioassays in toxicity studies for a safe and reliable screen of chemicals with potential interest in pharmaceutical industry.


Colloids and Surfaces B: Biointerfaces | 2016

PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release

Laís E. Scheeren; Daniele Rubert Nogueira; Letícia B. Macedo; M. Pilar Vinardell; Montserrat Mitjans; M. Rosa Infante; Clarice Madalena Bueno Rolim

The growing demand for efficient chemotherapy in many cancers requires novel approaches in target-delivery technologies. Nanomaterials with pH-responsive behavior appear to have potential ability to selectively release the encapsulated molecules by sensing the acidic tumor microenvironment or the low pH found in endosomes. Likewise, polyethylene glycol (PEG)- and poloxamer-modified nanocarriers have been gaining attention regarding their potential to improve the effectiveness of cancer therapy. In this context, DOX-loaded pH-responsive nanoparticles (NPs) modified with PEG or poloxamer were prepared and the effects of these modifiers were evaluated on the overall characteristics of these nanostructures. Chitosan and tripolyphosphate were selected to form NPs by the interaction of oppositely charged compounds. A pH-sensitive lysine-based amphiphile (77KS) was used as a bioactive adjuvant. The strong dependence of 77KS ionization with pH makes this compound an interesting candidate to be used for the design of pH-sensitive devices. The physicochemical characterization of all NPs has been performed, and it was shown that the presence of 77KS clearly promotes a pH-triggered DOX release. Accelerated and continuous release patterns of DOX from CS-NPs under acidic conditions were observed regardless of the presence of PEG or poloxamer. Moreover, photodegradation studies have indicated that the lyophilization of NPs improved DOX stability under UVA radiation. Finally, cytotoxicity experiments have shown the ability of DOX-loaded CS-NPs to kill HeLa tumor cells. Hence, the overall results suggest that these pH-responsive CS-NPs are highly potent delivery systems to target tumor and intracellular environments, rendering them promising DOX carrier systems for cancer therapy.


Amino Acids | 2012

Membrane-destabilizing activity of pH-responsive cationic lysine-based surfactants: role of charge position and alkyl chain length

Daniele Rubert Nogueira; Montserrat Mitjans; M. Carmen Morán; Lourdes Pérez; M. Pilar Vinardell

Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Here, we report novel cationic lysine-based surfactants (hydrochloride salts of Nε- and Nα-acyl lysine methyl ester) that differ in the position of the positive charge and the length of the alkyl chain. Amino acid-based surfactants could be promising novel biomaterials in drug delivery systems, given their biocompatible properties and low cytotoxic potential. We examined their ability to disrupt the cell membrane in a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model of endosomal membranes. Furthermore, we addressed the mechanism of surfactant-mediated membrane destabilization, including the effects of each surfactant on erythrocyte morphology as a function of pH. We found that only surfactants with the positive charge on the α-amino group of lysine showed pH-sensitive hemolytic activity and improved kinetics within the endosomal pH range, indicating that the positive charge position is critical for pH-responsive behavior. Moreover, our results showed that an increase in the alkyl chain length from 14 to 16 carbon atoms was associated with a lower ability to disrupt cell membranes. Knowledge on modulating surfactant-lipid bilayer interactions may help us to develop more efficient biocompatible amino acid-based drug delivery devices.


Nanomaterials | 2014

Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

Daniele Rubert Nogueira; Montserrat Mitjans; Clarice Rolim; M.P. Vinardell

Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures.


Journal of Photochemistry and Photobiology B-biology | 2013

Potential use of Cytisus scoparius extracts in topical applications for skin protection against oxidative damage.

Noelia González; Daniela Ribeiro; Eduarda Fernandes; Daniele Rubert Nogueira; Enma Conde; Andrés Moure; M.P. Vinardell; Montserrat Mitjans; Herminia Domínguez

Cytisus scoparius L. is used in folk medicine for the treatment of several ailments in which the antioxidant and anti-inflammatory effects of its carotenoid and flavonoid content is suggested to play an important role. We postulate that flavonoid- and carotenoid-rich extracts from C. scoparius may become useful in the preparation of formulations for topical application to protect the skin against oxidative damage mediated by high energy UV light radiation. The aim of this work was to apply an extraction process to obtain a bioactive extract from C. scoparius for the potential use in topical applications. Aqueous and ethanolic extracts from C. scoparius were characterized for its reducing capacity, radical scavenging capacity, and on the reactive oxygen and nitrogen species (ROS, RNS). The extracts showed activities comparable to that of synthetic antioxidants, and absence of skin-irritant effects at 1%. Those make them good candidates to be used in topical applications as active ingredients.


Journal of Separation Science | 2008

Determination of rupatadine in pharmaceutical formulations by a validated stability-indicating MEKC method

Daniele Rubert Nogueira; Maximiliano da Silva Sangoi; Lucélia Magalhães da Silva; Vítor Todeschini; Sérgio Luiz Dalmora

A stability-indicating MEKC was developed and validated for the analysis of rupatadine in tablet dosage forms, using nimesulide as internal standard. The MEKC method was performed on a fused-silica capillary (50 microm id; effective length, 40 cm). The BGE consisted of 15 mM borate buffer and 25 mM anionic detergent SDS solution at pH 10. The capillary temperature was maintained at 35 degrees C and the applied voltage was 25 kV. The injection was performed using the hydrodynamic mode at 50 mbar for 5 s, with detection by photodiode array detector set at 205 nm. The method was linear in the range of 0.5-150 microg/mL (r2=0.9996). The specificity and stability-indicating capability of the method were proven through degradation studies inclusive by MS, and showing also that there was no interference of the excipients and no increase of the cytotoxicity. The accuracy was 99.98% with bias lower than 1.06%. The LOD and LOQ were 0.1 and 0.5 microg/mL, respectively. The proposed method was successfully applied for the quantitative analysis of rupatadine in pharmaceutical formulations, and the results were compared to a validated RP-LC method, showing non-significant difference (p>0.05).


Materials Science and Engineering: C | 2015

Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the intracellular drug delivery.

Daniele Rubert Nogueira; Laís E. Scheeren; M. Pilar Vinardell; Montserrat Mitjans; M. Rosa Infante; Clarice Madalena Bueno Rolim

The pH-responsive delivery systems have brought new advances in the field of functional nanodevices and might allow more accurate and controllable delivery of specific cargoes, which is expected to result in promising applications in different clinical therapies. Here we describe a family of chitosan-TPP (tripolyphosphate) nanoparticles (NPs) for intracellular drug delivery, which were designed using two pH-sensitive amino acid-based surfactants from the family N(α),N(ε)-dioctanoyl lysine as bioactive compounds. Low and medium molecular weight chitosan (LMW-CS and MMW-CS, respectively) were used for NP preparation, and it was observed that the size distribution for NPs with LMW-CS were smaller (~168 nm) than that for NPs prepared with MMW-CS (~310 nm). Hemolysis assay demonstrated the pH-dependent biomembrane disruptional capability of the constructed NPs. The nanostructures incorporating the surfactants cause negligible membrane permeabilization at pH7.4. However, at acidic pH, prevailing in endosomes, membrane-destabilizing activity in an erythrocyte lysis assay became evident. When pH decreased to 6.6 and 5.4, hemolytic capability of chitosan NPs increased along with the raise of concentration. Furthermore, studies with cell culture showed that these pH-responsive NPs displayed low cytotoxic effects against 3T3 fibroblasts. The influence of chitosan molecular weight, chitosan to TPP weight ratio, nanoparticle size and nature of the surfactant counterion on the membrane-disruptive properties of nanoparticles was discussed in detail. Altogether, the results achieved here showed that by inserting the lysine-based amphiphiles into chitosan NPs, pH-sensitive membranolytic and potentially endosomolytic nanocarriers were developed, which, therefore, demonstrated ideal feasibility for intracellular drug delivery.


European Journal of Pharmaceutics and Biopharmaceutics | 2013

New cationic nanovesicular systems containing lysine-based surfactants for topical administration: Toxicity assessment using representative skin cell lines

Daniele Rubert Nogueira; M. Carmen Morán; Montserrat Mitjans; Verónica Martínez; Lourdes Pérez; M. Pilar Vinardell

Cationic nanovesicles have attracted considerable interest as effective carriers to improve the delivery of biologically active molecules into and through the skin. In this study, lipid-based nanovesicles containing three different cationic lysine-based surfactants were designed for topical administration. We used representative skin cell lines and in vitro assays to assess whether the cationic compounds modulate the toxic responses of these nanocarriers. The nanovesicles were characterized in both water and cell culture medium. In general, significant agglomeration occurred after 24h incubation under cell culture conditions. We found different cytotoxic responses among the formulations, which depended on the surfactant, cell line (3T3, HaCaT, and THP-1) and endpoint assayed (MTT, NRU, and LDH). Moreover, no potential phototoxicity was detected in fibroblast or keratinocyte cells, whereas only a slight inflammatory response was induced, as detected by IL-1α and IL-8 production in HaCaT and THP-1 cell lines, respectively. A key finding of our research was that the cationic charge position and the alkyl chain length of the surfactants determine the nanovesicles resulting toxicity. The charge on the α-amino group of lysine increased the depletion of cell metabolic activity, as determined by the MTT assay, while a higher hydrophobicity tends to enhance the toxic responses of the nanovesicles. The insights provided here using different cell lines and assays offer a comprehensive toxicological evaluation of this group of new nanomaterials.

Collaboration


Dive into the Daniele Rubert Nogueira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sérgio Luiz Dalmora

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clarice Madalena Bueno Rolim

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Lourdes Pérez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Laís E. Scheeren

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Lucélia Magalhães da Silva

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

M. Rosa Infante

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Letícia B. Macedo

Universidade Federal de Santa Maria

View shared research outputs
Researchain Logo
Decentralizing Knowledge