Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniele Teresi is active.

Publication


Featured researches published by Daniele Teresi.


Physical Review D | 2016

Asymmetric dark matter in the Sun and diphoton excess at the LHC

P. S. Bhupal Dev; Daniele Teresi

It has been recently pointed out that a momentum-dependent coupling of the asymmetric dark matter (ADM) with nucleons can explain the broad disagreement between helioseismological observables and the predictions of standard solar models. In this paper, we propose a minimal simplified ADM model consisting of a scalar and a pseudoscalar mediator, in addition to a Dirac fermionic DM, for generating such momentum-dependent interactions. Remarkably, the pseudoscalar with mass around 750 GeV can simultaneously explain the solar anomaly and the recent diphoton excess observed by both ATLAS and CMS experiments in the early s=13 TeV LHC data. In this framework, the total width of the resonance is naturally large, as suggested by the ATLAS experiment, since the resonance mostly decays to the ADM pair. The model predicts the existence of a new light scalar in the GeV range, interacting with quarks, and observable dijet, monojet, and tt signatures for the 750 GeV resonance at the LHC.


Nuclear Physics | 2014

Flavour covariant transport equations: An application to resonant leptogenesis

P. S. Bhupal Dev; Peter Millington; Apostolos Pilaftsis; Daniele Teresi

We present a fully flavour-covariant formalism for transport phenomena, by deriving Markovian master equations that describe the time-evolution of particle number densities in a statistical ensemble with arbitrary flavour content. As an application of this general formalism, we study flavour effects in a scenario of resonant leptogenesis (RL) and obtain the flavour-covariant evolution equations for heavy-neutrino and lepton number densities. This provides a complete and unified description of RL, capturing three distinct physical phenomena: (i) the resonant mixing between the heavy-neutrino states, (ii) coherent oscillations between different heavy-neutrino flavours, and (iii) quantum decoherence effects in the charged-lepton sector. To illustrate the importance of this formalism, we numerically solve the flavour-covariant rate equations for a minimal RL model and show that the total lepton asymmetry can be enhanced by up to one order of magnitude, as compared to that obtained from flavour-diagonal or partially flavour off-diagonal rate equations. Thus, the viable RL model parameter space is enlarged, thereby enhancing further the prospects of probing a common origin of neutrino masses and the baryon asymmetry in the Universe at the LHC, as well as in low-energy experiments searching for lepton flavour and number violation. The key new ingredients in our flavour-covariant formalism are rank-4 rate tensors, which are required for the consistency of our flavour-mixing treatment, as shown by an explicit calculation of the relevant transition amplitudes by generalizing the optical theorem. We also provide a geometric and physical interpretation of the heavy-neutrino degeneracy limits in the minimal RL scenario. Finally, we comment on the consistency of various suggested forms for the heavy-neutrino self-energy regulator in the lepton-number conserving limit.


Nuclear Physics | 2015

Kadanoff--Baym Approach to Flavour Mixing and Oscillations in Resonant Leptogenesis

P. S. Bhupal Dev; Peter Millington; Apostolos Pilaftsis; Daniele Teresi

We describe a loopwise perturbative truncation scheme for quantum transport equations in the Kadanoff–Baym formalism, which does not necessitate the use of the so-called Kadanoff–Baym or quasi-particle ansaetze for dressed propagators. This truncation scheme is used to study flavour effects in the context of Resonant Leptogenesis (RL), showing explicitly that, in the weakly-resonant regime, there exist two distinct and pertinent flavour effects in the heavy-neutrino sector: (i) the resonant mixing and (ii) the oscillations between different heavy-neutrino flavours. Moreover, we illustrate that Kadanoff–Baym and quasi-particle ansaetze, whilst appropriate for the flavour-singlet dressed charged-lepton and Higgs propagators of the RL scenario, should not be applied to the dressed heavy-neutrino propagators. The use of these approximations for the latter is shown to capture only flavour oscillations, whilst discarding the separate phenomenon of flavour mixing.


Physical Review Letters | 2016

Higgs doublet decay as the origin of the baryon asymmetry

Thomas Hambye; Daniele Teresi

We consider a question that curiously had not been properly considered thus far: in the standard seesaw model, what is the minimum value the mass of a right-handed (RH) neutrino must have for allowing successful leptogenesis via CP-violating decays? Answering this question requires us to take into account a number of thermal effects. We show that, for low RH neutrino masses, and thanks to these effects, leptogenesis turns out to proceed efficiently from the decay of the standard model scalar doublet components into a RH neutrino and a lepton. Such decays produce the asymmetry at low temperatures, slightly before sphaleron decoupling. If the RH neutrino has thermalized prior to producing the asymmetry, this mechanism turns out to lead to the bound m_{N}>2  GeV. If, instead, the RH neutrinos have not thermalized, leptogenesis from these decays is enhanced further and can be easily successful, even at lower scales. This Higgs-decay leptogenesis new mechanism works without requiring an interplay of flavor effects and/or cancellations of large Yukawa couplings in the neutrino mass matrix. Last but not least, such a scenario turns out to be testable, from direct production of the RH neutrino(s).


Nuclear Physics | 2013

Symmetry-improved CJT effective action

Apostolos Pilaftsis; Daniele Teresi

Abstract The formalism introduced by Cornwall, Jackiw and Tomboulis (CJT) provides a systematic approach to consistently resumming non-perturbative effects in Quantum Thermal Field Theory. One major limitation of the CJT effective action is that its loopwise expansion introduces residual violations of possible global symmetries, thus giving rise to massive Goldstone bosons in the spontaneously broken phase of the theory. In this paper we develop a novel symmetry-improved CJT formalism for consistently encoding global symmetries in a loopwise expansion. In our formalism, the extremal solutions of the fields and propagators to a loopwise truncated CJT effective action are subject to additional constraints given by the Ward Identities due to global symmetries. By considering a simple O ( 2 ) scalar model, we show that, unlike other methods, our approach satisfies a number of important field-theoretic properties. In particular, we find that the Goldstone boson resulting from spontaneous symmetry breaking of O ( 2 ) is massless and the phase transition is a second-order one, already in the Hartree–Fock approximation. After taking the sunset diagrams into account, we show how our approach properly describes the threshold properties of the massless Goldstone boson and the Higgs particle in the loops. Finally, assuming minimal modifications to the Hartree–Fock approximated CJT effective action, we calculate the corresponding symmetry-improved CJT effective potential and discuss the conditions for its uniqueness for scalar-field values away from its minimum.


Journal of High Energy Physics | 2017

A clockwork WIMP

Thomas Hambye; Daniele Teresi; Michel H. G. Tytgat

A bstractWe embed a thermal dark matter (DM) candidate within the clockwork framework. This mechanism allows to stabilize the DM particle over cosmological time because it suppresses its decay into Standard Model (SM) particles. At the same time, pair annihilations are unsuppressed, so that the relic density is set by the usual freeze-out of the DM particle from the thermal bath. The slow decay of the DM candidate is induced by “clockwork” particles that can be quite light (rather than at some GUT or Planck scale) and could be searched for at current or future colliders. According to the scenario considered, the very same particles also mediate the annihilation process, thus providing a connection between DM annihilation and DM decay, and fixing the mass scale of the clockwork states, otherwise unconstrained, to be in the TeV range or lighter. We then show how this setup can minimally emerge from the deconstruction of an extra dimension in flat spacetime. Finally, we argue that the clockwork mechanism that we consider could induce Majorana neutrino masses, with a seesaw scale of order TeV or less and Yukawa couplings of order unity.


Nuclear Physics | 2015

Corrigendum to "Flavour Covariant Transport Equations: an Application to Resonant Leptogenesis"

P. S. Bhupal Dev; Peter Millington; Apostolos Pilaftsis; Daniele Teresi

We amend the incorrect discussion in Nucl. Phys. B 886 (2014) 569 [1] concerning the numerical examples considered there. In particular, we discuss the viability of minimal radiative models of Resonant Leptogenesis and prove that no asymmetry can be generated at O(h4) in these scenarios. We present a minimal modification of the model considered in [1], where electroweak-scale right-handed Majorana neutrinos can easily accommodate both successful leptogenesis and observable signatures at Lepton Number and Flavour Violation experiments. The importance of the fully flavour-covariant rate equations, as developed in [1], for describing accurately the generation of the lepton asymmetry is reconfirmed.


Nuclear Physics | 2016

Symmetry-improved 2PI approach to the Goldstone-boson IR problem of the SM effective potential

Apostolos Pilaftsis; Daniele Teresi

Abstract The effective potential of the Standard Model (SM), from three loop order and higher, suffers from infrared (IR) divergences arising from quantum effects due to massless would-be Goldstone bosons associated with the longitudinal polarizations of the W ± and Z bosons. Such IR pathologies also hinder accurate evaluation of the two-loop threshold corrections to electroweak quantities, such as the vacuum expectation value of the Higgs field. However, these divergences are an artifact of perturbation theory, and therefore need to be consistently resummed in order to obtain an IR-safe effective potential. The so-called Two-Particle-Irreducible (2PI) effective action provides a rigorous framework to consistently perform such resummations, without the need to resort to ad hoc subtractions or running into the risk of over-counting contributions. By considering the recently proposed symmetry-improved 2PI formalism, we address the problem of the Goldstone-boson IR divergences of the SM effective potential in the gaugeless limit of the theory. In the same limit, we evaluate the IR-safe symmetry-improved 2PI effective potential, after taking into account quantum loops of chiral fermions, as well as the renormalization of spurious custodially breaking effects triggered by fermionic Yukawa interactions. Finally, we compare our results with those obtained with other methods presented in the literature.


International Journal of Modern Physics A | 2018

Flavor effects in leptogenesis

P. S. B. Dev; P. Di Bari; Bjorn Garbrecht; S. Lavignac; Peter Millington; Daniele Teresi

Flavor effects can have a significant impact on the final estimate of the lepton (and therefore baryon) asymmetry in scenarios of leptogenesis. It is therefore necessary to account fully for this flavor dynamics in the relevant transport equations that describe the production (and washout) of the asymmetry. Doing so can both open up and restrict viable regions of parameter space relative to the predictions of more approximate calculations. In this review, we identify the regimes in which flavor effects can be relevant and illustrate their impact in a number of phenomenological models. These include type I and type II seesaw embeddings, and low-scale resonant scenarios. In addition, we provide an overview of the semi-classical and field-theoretic methods that have been developed to capture flavor effects in a consistent way.


International Journal of Modern Physics A | 2018

Resonant enhancement in leptogenesis

P. S. B. Dev; Mathias Garny; J. Klaric; Peter Millington; Daniele Teresi

Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this review article, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.

Collaboration


Dive into the Daniele Teresi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Hambye

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. S. B. Dev

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge