Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniele Torella is active.

Publication


Featured researches published by Daniele Torella.


Cell | 2013

Adult c-kitpos Cardiac Stem Cells Are Necessary and Sufficient for Functional Cardiac Regeneration and Repair

Georgina M. Ellison; Carla Vicinanza; Andrew Smith; Iolanda Aquila; Angelo Leone; Cheryl D. Waring; Beverley J. Henning; Giuliano Giuseppe Stirparo; Roberto Papait; Marzia Scarfò; Valter Agosti; Giuseppe Viglietto; Gianluigi Condorelli; Ciro Indolfi; Sergio Ottolenghi; Daniele Torella; Bernardo Nadal-Ginard

The epidemic of heart failure has stimulated interest in understanding cardiac regeneration. Evidence has been reported supporting regeneration via transplantation of multiple cell types, as well as replication of postmitotic cardiomyocytes. In addition, the adult myocardium harbors endogenous c-kit(pos) cardiac stem cells (eCSCs), whose relevance for regeneration is controversial. Here, using different rodent models of diffuse myocardial damage causing acute heart failure, we show that eCSCs restore cardiac function by regenerating lost cardiomyocytes. Ablation of the eCSC abolishes regeneration and functional recovery. The regenerative process is completely restored by replacing the ablated eCSCs with the progeny of one eCSC. eCSCs recovered from the host and recloned retain their regenerative potential in vivo and in vitro. After regeneration, selective suicide of these exogenous CSCs and their progeny abolishes regeneration, severely impairing ventricular performance. These data show that c-kit(pos) eCSCs are necessary and sufficient for the regeneration and repair of myocardial damage.


Circulation Research | 2011

MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo

Daniele Torella; Claudio Iaconetti; Daniele Catalucci; Georgina M. Ellison; Angelo Leone; Cheryl D. Waring; Angela Bochicchio; Carla Vicinanza; Iolanda Aquila; Antonio Curcio; Gianluigi Condorelli; Ciro Indolfi

Rationale: MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. Objective: The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. Methods and Results: We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal–regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. Conclusions: Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.


Journal of the American College of Cardiology | 2011

Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart.

Georgina M. Ellison; Daniele Torella; Santo Dellegrottaglie; Claudia Pérez-Martínez; Armando Pérez de Prado; Carla Vicinanza; Saranya Purushothaman; Valentina Galuppo; Claudio Iaconetti; Cheryl D. Waring; Andrew Smith; Michele Torella; Carlos Cuellas Ramón; José M. Gonzalo-Orden; Valter Agosti; Ciro Indolfi; Manuel Galiñanes; Felipe Fernández-Vázquez; Bernardo Nadal-Ginard

OBJECTIVES The purpose of this study was to test the ability of insulin-like growth factor (IGF)-1/hepatocyte growth factor (HGF) to activate resident endogenous porcine cardiac stem/progenitor cells (epCSCs) and to promote myocardial repair through a clinically applicable intracoronary injection protocol in a pig model of myocardial infarction (MI) relevant to human disease. BACKGROUND In rodents, cardiac stem/progenitor cell (CSC) transplantation as well as in situ activation through intramyocardial injection of specific growth factors has been shown to result in myocardial regeneration after acute myocardial infarction (AMI). METHODS Acute MI was induced in pigs by a 60-min percutaneous transluminal coronary angiography left anterior descending artery occlusion. The IGF-1 and HGF were co-administered through the infarct-related artery in a single dose (ranging from 0.5 to 2 μg HGF and 2 to 8 μg IGF-1) 30 min after coronary reperfusion. Pigs were sacrificed 21 days later for dose-response relationship evaluation by immunohistopathology or 2 months later for cardiac function evaluation by cardiac magnetic resonance imaging. RESULTS The IGF-1/HGF activated c-kit positive-CD45 negative epCSCs and increased their myogenic differentiation in vitro. The IGF-1/HGF, in a dose-dependent manner, improved cardiomyocyte survival, and reduced fibrosis and cardiomyocyte reactive hypertrophy. It significantly increased c-kit positive-CD45 negative epCSC number and fostered the generation of new myocardium (myocytes and microvasculature) in infarcted and peri-infarct/border regions at 21 and 60 days after AMI. The IGF-1/HGF reduced infarct size and improved left ventricular function at 2 months after AMI. CONCLUSIONS In an animal model of AMI relevant to the human disease, intracoronary administration of IGF-1/HGF is a practical and effective strategy to reduce pathological cardiac remodeling, induce myocardial regeneration, and improve ventricular function.


Heart | 2012

Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms

Georgina M. Ellison; Cheryl D. Waring; Carla Vicinanza; Daniele Torella

Exercise training fosters the health and performance of the cardiovascular system, and represents nowadays a powerful tool for cardiovascular therapy. Exercise exerts its beneficial effects through reducing cardiovascular risk factors, and directly affecting the cellular and molecular remodelling of the heart. Traditionally, moderate endurance exercise training has been viewed to determine a balanced and revertible physiological growth, through cardiomyocyte hypertrophy accompanied by appropriate neoangiogenesis (the Athletes Heart). These cellular adaptations are due to the activation of signalling pathways and in particular, the IGF-1/IGF-1R/Akt axis appears to have a major role. Recently, it has been shown that physical exercise determines cardiac growth also through new cardiomyocyte formation. Accordingly, burgeoning evidence indicates that exercise training activates circulating, as well as resident tissue-specific cardiac, stem/progenitor cells. Dissecting the mechanisms for stem/progenitor cell activation with exercise will be instrumental to devise new effective therapies, encompassing myocardial regeneration for a large spectrum of cardiovascular diseases.


Journal of Biological Chemistry | 2007

Acute β-Adrenergic Overload Produces Myocyte Damage through Calcium Leakage from the Ryanodine Receptor 2 but Spares Cardiac Stem Cells

Georgina M. Ellison; Daniele Torella; Ioannis Karakikes; Saranya Purushothaman; Antonio Curcio; Cosimo Gasparri; Ciro Indolfi; N. Tim Cable; David F. Goldspink; Bernardo Nadal-Ginard

A hyperadrenergic state is a seminal aspect of chronic heart failure. Also, “Takotsubo stress cardiomyopathy,” is associated with increased plasma catecholamine levels. The mechanisms of myocyte damage secondary to excess catecholamine exposure as well as the consequence of this neurohumoral burst on cardiac stem cells (CSCs) are unknown. Cardiomyocytes and CSCs were exposed to high doses of isoproterenol (ISO), in vivo and in vitro. Male Wistar rats received a single injection of ISO (5 mg kg-1) and were sacrificed 1, 3, and 6 days later. In comparison with controls, LV function was impaired in rats 1 day after ISO and started to improve at 3 days. The fraction of dead myocytes peaked 1 day after ISO and decreased thereafter. ISO administration resulted in significant ryanodine receptor 2 (RyR2) hyperphosphorylation and RyR2-calstabin dissociation. JTV519, a RyR2 stabilizer, prevented the ISO-induced death of adult myocytes in vitro. In contrast, CSCs were resistant to the acute neurohumoral overload. Indeed, CSCs expressed a decreased and inverted complement of β1/β2-adrenoreceptors and absence of RyR2, which may explain their survival to ISO insult. Thus, a single injection of ISO causes diffuse myocyte death through Ca2+ leakage secondary to the acutely dysfunctional RyR2. CSCs are resistant to the noxious effects of an acute hyperadrenergic state and through their activation participate in the response to the ISO-induced myocardial injury. The latter could contribute to the ability of the myocardium to rapidly recover from acute hyperadrenergic damage.


Circulation | 2002

Hydroxymethylglutaryl Coenzyme A Reductase Inhibitor Simvastatin Prevents Cardiac Hypertrophy Induced by Pressure Overload and Inhibits p21ras Activation

Ciro Indolfi; Emilio Di Lorenzo; Cinzia Perrino; Angela Maria Stingone; Antonio Curcio; Daniele Torella; A Cittadini; Luca Cardone; Carmela Coppola; Luigi Cavuto; Oreste Arcucci; Luigi Saccà; Enrico V. Avvedimento; Massimo Chiariello

Background—Patients with cardiac hypertrophy are at increased cardiovascular risk. It has been hypothesized that hydroxymethylglutaryl coenzyme A reductase inhibitors may exert beneficial effects other than their cholesterol-lowering actions. The aims of the study were to assess the in vivo effects of simvastatin (SIM) on cardiac hypertrophy and on Ras signaling in rats with ascending aorta banding. Methods and Results—Wistar rats were randomized to receive either treatment with SIM or placebo, and then short-term (group I) and long-term (group II) left ventricular pressure overload was performed by placing a tantalum clip on ascending aorta. At the end of treatment period, left and right ventricular weight, body weight, and tibial length were measured and echocardiographic evaluations were performed. Ras signaling was investigated by analyzing Ras membrane localization and activation, ERK2 phosphorylation, and p27kip1 and cdk4 levels. In SIM-treated rats, a significant reduction of left ventricular weight/body weight, echocardiographic left ventricular mass, and left ventricular end-diastolic diameter and end-diastolic pressure was found. In rats with pressure overload, SIM treatment significantly reduced Ras membrane targeting, Ras in vivo activation, ERK2 phosphorylation, and the ratio cdk4/p27kip1. Conclusions—HMG CoA inhibitor SIM inhibits in vivo Ras signaling and prevents left ventricular hypertrophy development in aortic-banded animals.


Circulation | 2001

Effects of Balloon Injury on Neointimal Hyperplasia in Streptozotocin-Induced Diabetes and in Hyperinsulinemic Nondiabetic Pancreatic Islet–Transplanted Rats

Ciro Indolfi; Daniele Torella; Luigi Cavuto; Alberto M. Davalli; Carmela Coppola; Giovanni Esposito; Mariolina V. Carriero; Antonio Rapacciuolo; Emilio Di Lorenzo; Eugenio Stabile; Cinzia Perrino; Alaide Chieffo; Francesco Pardo; Massimo Chiariello

Background—The mechanisms of increased neointimal hyperplasia after coronary interventions in diabetic patients are still unknown. Methods and Results—Glucose and insulin effects on in vitro vascular smooth muscle cell (VSMC) proliferation and migration were assessed. The effect of balloon injury on neointimal hyperplasia was studied in streptozotocin-induced diabetic rats with or without adjunct insulin therapy. To study the effect of balloon injury in nondiabetic rats with hyperinsulinemia, pancreatic islets were transplanted under the kidney capsule in normal rats. Glucose did not increase VSMC proliferation and migration in vitro. In contrast, insulin induced a significant increase in VSMC proliferation and migration in cell cultures. Furthermore, in VSMC culture, insulin increased MAPK activation. A reduction in neointimal hyperplasia was consistently documented after vascular injury in hyperglycemic streptozotocin-induced diabetic rats. Insulin therapy significantly increased neointimal hyperplasia in these rats. This effect of hyperinsulinemia was totally abolished by transfection on the arterial wall of the N17H-ras–negative mutant gene. Finally, after experimental balloon angioplasty in hyperinsulinemic nondiabetic islet-transplanted rats, a significant increase in neointimal hyperplasia was observed. Conclusions—In rats with streptozotocin-induced diabetes, balloon injury was not associated with an increase in neointimal formation. Exogenous insulin administration in diabetic rats and islet transplantation in nondiabetic rats increased both blood insulin levels and neointimal hyperplasia after balloon injury. Hyperinsulinemia through activation of the ras/MAPK pathway, rather than hyperglycemia per se, seems to be of crucial importance in determining the exaggerated neointimal hyperplasia after balloon angioplasty in diabetic animals.


Trends in Cardiovascular Medicine | 2003

Molecular Mechanisms of In-Stent Restenosis and Approach to Therapy with Eluting Stents

Ciro Indolfi; Annalisa Mongiardo; Antonio Curcio; Daniele Torella

Restenosis is the principal drawback of percutaneous coronary procedures. Until now, the only widely accepted way to reduce restenosis rate has been the stent. However, clinical restenosis still represents the major limitation of this technology. This article summarizes recent laboratory and clinical investigations concerning the mechanisms responsible for the transmission of mitogenic signals from plasma membrane to the nucleus in vascular smooth muscle cells that determine neointima formation after stent deployment. Recent experimental data on the impact of diabetes and physical exercise on restenosis also is reviewed. Finally, the new concept of local drugs that elute directly to the site of vascular injury from coated stents and the available clinical results obtained with rapamycin or paclitaxel-eluting stents are discussed.


European Heart Journal | 2014

The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation

Cheryl D. Waring; Carla Vicinanza; Angela Papalamprou; Andrew Smith; Saranya Purushothaman; David F. Goldspink; Bernardo Nadal-Ginard; Daniele Torella; Georgina M. Ellison

Aims It is a dogma of cardiovascular pathophysiology that the increased cardiac mass in response to increased workload is produced by the hypertrophy of the pre-existing myocytes. The role, if any, of adult-resident endogenous cardiac stem/progenitor cells (eCSCs) and new cardiomyocyte formation in physiological cardiac remodelling remains unexplored. Methods and results In response to regular, intensity-controlled exercise training, adult rats respond with hypertrophy of the pre-existing myocytes. In addition, a significant number (∼7%) of smaller newly formed BrdU-positive cardiomyocytes are produced by the exercised animals. Capillary density significantly increased in exercised animals, balancing cardiomyogenesis with neo-angiogenesis. c-kitpos eCSCs increased their number and activated state in exercising vs. sedentary animals. c-kitpos eCSCs in exercised hearts showed an increased expression of transcription factors, indicative of their commitment to either the cardiomyocyte (Nkx2.5pos) or capillary (Ets-1pos) lineages. These adaptations were dependent on exercise duration and intensity. Insulin-like growth factor-1, transforming growth factor-β1, neuregulin-1, bone morphogenetic protein-10, and periostin were significantly up-regulated in cardiomyocytes of exercised vs. sedentary animals. These factors differentially stimulated c-kitpos eCSC proliferation and commitment in vitro, pointing to a similar role in vivo. Conclusion Intensity-controlled exercise training initiates myocardial remodelling through increased cardiomyocyte growth factor expression leading to cardiomyocyte hypertrophy and to activation and ensuing differentiation of c-kitpos eCSCs. This leads to the generation of new myocardial cells. These findings highlight the endogenous regenerative capacity of the adult heart, represented by the eCSCs, and the fact that the physiological cardiac adaptation to exercise stress is a combination of cardiomyocyte hypertrophy and hyperplasia (cardiomyocytes and capillaries).


Circulation Research | 2002

Physical Training Increases eNOS Vascular Expression and Activity and Reduces Restenosis After Balloon Angioplasty or Arterial Stenting in Rats

Ciro Indolfi; Daniele Torella; Carmela Coppola; Antonio Curcio; Francisca Rodriguez; Antonio Bilancio; Antonio Leccia; Oreste Arcucci; Mariacristina Falco; Dario Leosco; Massimo Chiariello

Abstract— The effects of dynamic exercise on restenosis after vascular injury are still unknown. The consequences of balloon dilation–induced injury on neointimal hyperplasia, vascular negative remodeling, and reendothelialization were assessed in sedentary and trained rats. Ex vivo eNOS vascular expression and activity were investigated in carotid arteries isolated from sedentary and exercised rats. The in vivo effects of eNOS inhibition by L-NMMA on vessel wall after balloon dilation were evaluated in sedentary and exercised rats. We also investigated the effects of exercise on neointimal formation in a rat stent model of vascular injury. Compared with sedentary group, the arteries isolated from trained rats showed higher levels of eNOS protein expression and activity 7 days after balloon dilation. A significant reduction of both neointimal hyperplasia and negative remodeling was observed 14 days after balloon injury in trained compared with sedentary rats. Moreover, we demonstrated that exercise training produced accelerated reendothelialization of the balloon injured arterial segments compared with sedentary. L-NMMA administration eliminated the benefits of physical training on vessel wall after balloon dilation. Finally, a decrease of neointimal hyperplasia as well as of platelet aggregation was observed after stent deployment in trained rats compared with sedentary. In conclusion, physical exercise could favorably affect restenosis after balloon angioplasty and stenting. Increase in eNOS expression and activity might contribute to the potential beneficial effects of exercise on the vessel wall after vascular injury.

Collaboration


Dive into the Daniele Torella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annalisa Mongiardo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Massimo Chiariello

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Cheryl D. Waring

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Michele Torella

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabato Sorrentino

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Domenico Cozzolino

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge