Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danielle E. Marias is active.

Publication


Featured researches published by Danielle E. Marias.


Plant Cell and Environment | 2014

Dynamics of leaf water relations components in co‐occurring iso‐ and anisohydric conifer species

Frederick C. Meinzer; David R. Woodruff; Danielle E. Marias; Katherine A. McCulloh; Sanna Sevanto

Because iso- and anisohydric species differ in stomatal regulation of the rate and magnitude of fluctuations in shoot water potential, they may be expected to show differences in the plasticity of their shoot water relations components, but explicit comparisons of this nature have rarely been made. We subjected excised shoots of co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis to pressure-volume analysis with and without prior artificial rehydration. In J. monosperma, the shoot water potential at turgor loss (Ψ(TLP)) ranged from -3.4 MPa in artificially rehydrated shoots to -6.6 MPa in shoots with an initial Ψ of -5.5 MPa, whereas in P. edulis mean Ψ(TLP) remained at ∼ -3.0 MPa over a range of initial Ψ from -0.1 to -2.3 MPa. The shoot osmotic potential at full turgor and the bulk modulus of elasticity also declined sharply with shoot Ψ in J. monosperma, but not in P. edulis. The contrasting behaviour of J. monosperma and P. edulis reflects differences in their capacity for homeostatic regulation of turgor that may be representative of aniso- and isohydric species in general, and may also be associated with the greater capacity of J. monosperma to withstand severe drought.


New Phytologist | 2015

Linking nonstructural carbohydrate dynamics to gas exchange and leaf hydraulic behavior in Pinus edulis and Juniperus monosperma

David R. Woodruff; Frederick C. Meinzer; Danielle E. Marias; Sanna Sevanto; Michael W. Jenkins; Nate G. McDowell

Leaf hydraulics, gas exchange and carbon storage in Pinus edulis and Juniperus monosperma, two tree species on opposite ends of the isohydry-anisohydry spectrum, were analyzed to examine relationships between hydraulic function and carbohydrate dynamics. Leaf hydraulic vulnerability, leaf water potential (Ψl ), leaf hydraulic conductance (Kleaf ), photosynthesis (A), stomatal conductance (gs) and nonstructural carbohydrate (NSC) content were analyzed throughout the growing season. Leaf hydraulic vulnerability was significantly lower in the relatively anisohydric J. monosperma than in the more isohydric P. edulis. In P. edulis, Ψl dropped and stayed below 50% loss of leaf hydraulic conductance (P₅₀) early in the day during May, August and around midday in September, leading to sustained reductions in Kleaf . In J. monosperma, Ψl dropped below P₅₀ only during August, resulting in the maintenance of Kleaf during much of the growing season. Mean A and gs during September were significantly lower in P. edulis than in J. monosperma. Foliar total NSC was two to three times greater in J. monosperma than in P. edulis in June, August and September. Consistently lower levels of total NSC in P. edulis suggest that its isohydric strategy pushes it towards the exhaustion of carbon reserves during much of the growing season.


Tree Physiology | 2015

Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates

Kelly L. Kerr; Frederick C. Meinzer; Katherine A. McCulloh; David R. Woodruff; Danielle E. Marias

First-year tree seedlings represent a particularly vulnerable life stage and successful seedling establishment is crucial for forest regeneration. We investigated the extent to which Pinus ponderosa P. & C. Lawson populations from different climate zones exhibit differential expression of functional traits that may facilitate their establishment. Seeds from two populations from sites with contrasting precipitation and temperature regimes east (PIPO dry) and west (PIPO mesic) of the Oregon Cascade mountains were sown in a common garden experiment and grown under two water availability treatments (control and drought). Aboveground biomass accumulation, vegetative phenology, xylem anatomy, plant hydraulic architecture, foliar stable carbon isotope ratios (δ(13)C), gas exchange and leaf water relations characteristics were measured. No treatment or population-related differences in leaf water potential were detected. At the end of the first growing season, aboveground biomass was 74 and 44% greater in PIPO mesic in the control and drought treatments, respectively. By early October, 73% of PIPO dry seedlings had formed dormant buds compared with only 15% of PIPO mesic seedlings. Stem theoretical specific conductivity, calculated from tracheid dimensions and packing density, declined from June through September and was nearly twice as high in PIPO mesic during most of the growing season, consistent with measured values of specific conductivity. Intrinsic water-use efficiency based on δ(13)C values was higher in PIPO dry seedlings for both treatments across all sampling dates. There was a negative relationship between values of δ(13)C and leaf-specific hydraulic conductivity across populations and treatments, consistent with greater stomatal constraints on gas exchange with declining seedling hydraulic capacity. Integrated growing season assimilation and stomatal conductance estimated from foliar δ(13)C values and photosynthetic CO2-response curves were 6 and 28% lower, respectively, in PIPO dry seedlings. Leaf water potential at the turgor loss point was 0.33 MPa more negative in PIPO dry, independent of treatment. Overall, PIPO dry seedlings exhibited more conservative behavior, suggesting reduced growth is traded off for increased resistance to drought and extreme temperatures.


Tree Physiology | 2014

Impacts of dwarf mistletoe on the physiology of host Tsuga heterophylla trees as recorded in tree-ring C and O stable isotopes

Danielle E. Marias; Frederick C. Meinzer; David R. Woodruff; David C. Shaw; Steven L. Voelker; J. Renée Brooks; Kristen Falk; Jennifer L. McKay

Dwarf mistletoes, obligate, parasitic plants with diminutive aerial shoots, have long-term effects on host tree water relations, hydraulic architecture and photosynthetic gas exchange and can eventually induce tree death. To investigate the long-term (1886-2010) impacts of dwarf mistletoe on the growth and gas exchange characteristics of host western hemlock, we compared the diameter growth and tree-ring cellulose stable carbon (C) and oxygen (O) isotope ratios (δ(13)Ccell, δ(18)Ocell) of heavily infected and uninfected trees. The relative basal area growth of infected trees was significantly greater than that of uninfected trees in 1886-90, but declined more rapidly in infected than uninfected trees through time and became significantly lower in infected than uninfected trees in 2006-10. Infected trees had significantly lower δ(13)Ccell and δ(18)Ocell than uninfected trees. Differences in δ(18)Ocell between infected and uninfected trees were unexpected given that stomatal conductance and environmental variables that were expected to influence the δ(18)O values of leaf water were similar for both groups. However, estimates of mesophyll conductance (gm) were significantly lower and estimates of effective path length for water movement (L) were significantly higher in leaves of infected trees, consistent with their lower values of δ(18)Ocell. This study reconstructs the long-term physiological responses of western hemlock to dwarf mistletoe infection. The long-term diameter growth and δ(13)Ccell trajectories suggested that infected trees were growing faster than uninfected trees prior to becoming infected and subsequently declined in growth and leaf-level photosynthetic capacity compared with uninfected trees as the dwarf mistletoe infection became severe. This study further points to limitations of the dual-isotope approach for identifying sources of variation in δ(13)Ccell and indicates that changes in leaf internal properties such as gm and L that affect δ(18)Ocell must be considered.


Ecology and Evolution | 2017

Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica

Danielle E. Marias; Frederick C. Meinzer; Christopher J. Still

Abstract Given future climate predictions of increased temperature, and frequency and intensity of heat waves in the tropics, suitable habitat to grow ecologically, economically, and socially valuable Coffea arabica is severely threatened. We investigated how leaf age and heat stress duration impact recovery from heat stress in C. arabica. Treated plants were heated in a growth chamber at 49°C for 45 or 90 min. Physiological recovery was monitored in situ using gas exchange, chlorophyll fluorescence (the ratio of variable to maximum fluorescence, F V/F M), and leaf nonstructural carbohydrate (NSC) on mature and expanding leaves before and 2, 15, 25, and 50 days after treatment. Regardless of leaf age, the 90‐min treatment resulted in greater F V/F M reduction 2 days after treatment and slower recovery than the 45‐min treatment. In both treatments, photosynthesis of expanding leaves recovered more slowly than in mature leaves. Stomatal conductance (g s) decreased in expanding leaves but did not change in mature leaves. These responses led to reduced intrinsic water‐use efficiency with increasing heat stress duration in both age classes. Based on a leaf energy balance model, aftereffects of heat stress would be exacerbated by increases in leaf temperature at low g s under full sunlight where C. arabica is often grown, but also under partial sunlight. Starch and total NSC content of the 45‐min group significantly decreased 2 days after treatment and then accumulated 15 and 25 days after treatment coinciding with recovery of photosynthesis and F V/F M. In contrast, sucrose of the 90‐min group accumulated at day 2 suggesting that phloem transport was inhibited. Both treatment group responses contrasted with control plant total NSC and starch, which declined with time associated with subsequent flower and fruit production. No treated plants produced flowers or fruits, suggesting that short duration heat stress can lead to crop failure.


Tree Physiology | 2016

Thermotolerance and heat stress responses of Douglas-fir and ponderosa pine seedling populations from contrasting climates

Danielle E. Marias; Frederick C. Meinzer; David R. Woodruff; Katherine A. McCulloh

Temperature and the frequency and intensity of heat waves are predicted to increase throughout the 21st century. Germinant seedlings are expected to be particularly vulnerable to heat stress because they are in the boundary layer close to the soil surface where intense heating occurs in open habitats. We quantified leaf thermotolerance and whole-plant physiological responses to heat stress in first-year germinant seedlings in two populations each of Pinus ponderosa P. and C. Lawson (PIPO) and Pseudotsuga menziesii (Mirb.) Franco (PSME) from climates with contrasting precipitation and temperature regimes. Thermotolerance of detached needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. PSME was more heat tolerant than PIPO according to both independent assessments of thermotolerance. Following exposure of whole seedlings to a simulated heat wave at 45 °C for 1 h in a growth chamber, we monitored FV/FM, photosynthesis, stomatal conductance, non-structural carbohydrates (NSCs) and carbon isotope ratios (δ13C) for 14 days. Heat treatment induced significant reductions in FV/FM in both species and a transient reduction in photosynthetic gas exchange only in PIPO 1 day after treatment. Heat treatment induced an increase in glucose + fructose concurrent with a decrease in starch in both species, whereas total NSC and sucrose were not affected by heat treatment. The negative relationship between glucose + fructose and starch observed in treated plants may be due to the conversion of starch to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites displayed greater δ13C values than those from wetter sites, consistent with higher intrinsic water-use efficiency and drought resistance of populations from drier climates. Thermotolerance and heat stress responses appeared to be phenotypically plastic and representative of the environment in which plants were grown, whereas intrinsic water-use efficiency appeared to reflect ecotypic differentiation and the climate of origin.


Ecology Letters | 2016

Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status

Frederick C. Meinzer; David R. Woodruff; Danielle E. Marias; Duncan D. Smith; Katherine A. McCulloh; Ava R. Howard; Alicia L. Magedman


Plant Cell and Environment | 2017

Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status

Frederick C. Meinzer; Duncan D. Smith; David R. Woodruff; Danielle E. Marias; Katherine A. McCulloh; Ava R. Howard; Alicia L. Magedman


Trees-structure and Function | 2017

Leaf age and methodology impact assessments of thermotolerance of Coffea arabica

Danielle E. Marias; Frederick C. Meinzer; Christopher J. Still


Ecosphere | 2018

How do we ensure the future of our discipline is vibrant? Student reflections on careers and culture of ecology

Winslow D. Hansen; Joshua P. Scholl; Amanda E. Sorensen; Kelsey E. Fisher; Jessica A. Klassen; Leonardo Calle; Gaurav S. Kandlikar; Nicholas Kortessis; Dion C. Kucera; Danielle E. Marias; Desiree L. Narango; Kayleigh O'Keeffe; Wilnelia Recart; Elizabeth Ridolfi; Monika E. Shea

Collaboration


Dive into the Danielle E. Marias's collaboration.

Top Co-Authors

Avatar

Frederick C. Meinzer

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine A. McCulloh

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sanna Sevanto

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ava R. Howard

Western Oregon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge