Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danielle Karo-Atar is active.

Publication


Featured researches published by Danielle Karo-Atar.


Nature Immunology | 2014

Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5–induced eosinophil development

Netali Ben Baruch-Morgenstern; Dana Shik; Itay Moshkovits; Michal Itan; Danielle Karo-Atar; Carine Bouffi; Patricia C. Fulkerson; Diana Rashkovan; Steffen Jung; Marc E. Rothenberg; Ariel Munitz

Eosinophilia is a hallmark characteristic of T helper type 2 (TH2) cell–associated diseases and is critically regulated by the central eosinophil growth factor interleukin 5 (IL-5). Here we demonstrate that IL-5 activity in eosinophils was regulated by paired immunoglobulin-like receptors PIR-A and PIR-B. Upon self-recognition of β2-microglobulin (β2M) molecules, PIR-B served as a permissive checkpoint for IL-5–induced development of eosinophils by suppressing the proapoptotic activities of PIR-A, which were mediated by the Grb2-Erk-Bim pathway. PIR-B–deficient bone marrow eosinophils underwent compartmentalized apoptosis, resulting in decreased blood eosinophilia in naive mice and in mice challenged with IL-5. Subsequently, Pirb−/− mice displayed impaired aeroallergen-induced lung eosinophilia and induction of lung TH2 cell responses. Collectively, these data uncover an intrinsic, self-limiting pathway regulating IL-5–induced expansion of eosinophils, which has broad implications for eosinophil-associated diseases.


American Journal of Respiratory Cell and Molecular Biology | 2012

Resistin-Like Molecule–α Regulates IL-13–Induced Chemokine Production but Not Allergen-Induced Airway Responses

Ariel Munitz; Eric T. Cole; Danielle Karo-Atar; Fred D. Finkelman; Marc E. Rothenberg

Resistin-like molecule α (Relm-α) is one of the most up-regulated gene products in allergen- and parasite-associated Th2 responses. Localized to alternatively activated macrophages, Relm-α was shown to exert an anti-inflammatory effect in parasite-induced Th2 responses, but its role in experimental asthma remains unexplored. Here, we analyzed the cellular source, the IL-4 receptors required to stimulate Relm-α production, and the role of Relm-α after experimental asthma induction by IL-4, IL-13, or multiple experimental regimes, including ovalbumin and Aspergillus fumigatus immunization. We demonstrate that Relm-α was secreted into the airway lumen, dependent on both the IL-13 receptor-α1 chain and likely the Type I IL-4 receptor, and differentially localized to epithelial cells and myeloid cells, depending on the specific cytokine or aeroallergen trigger. Studies performed with Retnla gene-targeted mice demonstrate that Relm-α was largely redundant in terms of inducing the infiltration of Th2 cytokines, mucus, and inflammatory cells into the lung. These results mirror the dispensable role that other alternatively activated macrophage products (such as arginase 1) have in allergen-induced experimental asthma and contrast with their role in the setting of parasitic infections. Taken together, our findings demonstrate the distinct utilization of IL-4/IL-13 receptors for the induction of Relm-α in the lungs. The differential regulation of Relm-α expression is likely determined by the relative expression levels of IL-4, IL-13, and their corresponding receptors, which are differentially expressed by divergent cells (i.e., epithelial cells and macrophages.) Finally, we identify a largely redundant functional role for Relm-α in acute experimental models of allergen-associated Th2 immune responses.


Proceedings of the National Academy of Sciences of the United States of America | 2015

CD300f associates with IL-4 receptor α and amplifies IL-4–induced immune cell responses

Itay Moshkovits; Danielle Karo-Atar; Michal Itan; Hadar Reichman; Perri Rozenberg; Netali Morgenstern-Ben-Baruch; Dana Shik; Aroa Ejarque-Ortiz; Alon Y. Hershko; Linjie Tian; John E. Coligan; Joan Sayós; Ariel Munitz

Significance IL-4 receptor (R) α is a critical component in IL-4– and IL-13–mediated signaling and subsequent effector functions such as those observed in allergy. Thus, it is a primary therapeutic target in diseases such as atopic dermatitis and asthma. Despite extensive studies, it is unknown whether an additional receptor system exists that may act to amplify IL-4Rα signaling and subsequent IL-4/IL-13–induced responses. We now report that CD300f is physically associated with IL-4Rα and potently amplifies IL-4Rα–induced responses in vitro and in vivo. Our results establish CD300f as a previously unidentified IL-4Rα coreceptor. To the best of our knowledge, this is the first report of an additional receptor that serves to amplify the IL-4 signaling pathway. IL-4 receptor (R) α, the common receptor chain for IL-4 and IL-13, is a critical component in IL-4– and IL-13–mediated signaling and subsequent effector functions such as those observed in type 2 inflammatory responses. Nonetheless, the existence of intrinsic pathways capable of amplifying IL-4Rα–induced responses remains unknown. In this study, we identified the myeloid-associated Ig receptor CD300f as an IL-4–induced molecule in macrophages. Subsequent analyses demonstrated that CD300f was colocalized and physically associated with IL-4Rα. Using Cd300f−/− cells and receptor cross-linking experiments, we established that CD300f amplified IL-4Rα–induced responses by augmenting IL-4/IL-13–induced signaling, mediator release, and priming. Consistently, IL-4– and aeroallergen-treated Cd300f−/− mice displayed decreased IgE production, chemokine expression, and inflammatory cell recruitment. Impaired responses in Cd300f−/− mice were not due to the inability to generate a proper Th2 response, because IL-4/IL-13 levels were markedly increased in allergen-challenged Cd300f−/− mice, a finding that is consistent with decreased cytokine consumption. Finally, CD300f expression was increased in monocytes and eosinophils obtained from allergic rhinitis patients. Collectively, our data highlight a previously unidentified role for CD300f in IL-4Rα–induced immune cell responses. These data provide new insights into the molecular mechanisms governing IL-4Rα–induced responses, and may provide new therapeutic tools to target IL-4 in allergy and asthma.


American Journal of Respiratory Cell and Molecular Biology | 2013

Paired immunoglobulin-like receptor-B inhibits pulmonary fibrosis by suppressing profibrogenic properties of alveolar macrophages.

Danielle Karo-Atar; Itay Moshkovits; Oliver Eickelberg; Melanie Königshoff; Ariel Munitz

Macrophages are lung-resident cells that play key roles in fibrosis. Surprisingly, pathways that inhibit macrophage functions, especially in idiopathic pulmonary fibrosis (IPF), receive little attention. The cell-surface molecule paired immunoglobulin-like receptor B (PIR-B) can suppress macrophage activation. However, its role in pulmonary fibrosis remains unknown. We sought to define the role of PIR-B in IPF. The expression of PIR-B was assessed (by quantitative PCR and flow cytometry) after bleomycin treatment. Differential cell counts, histopathology, and profibrogenic-mediator expression, for example, collagen, α-smooth muscle actin, resistin-like molecule-α (Relm-α), matrix metalloproteinase (MMP)-12, and tissue inhibitor of metalloproteinase (TIMP)-1, were determined (by ELISA quantitative PCR and flow cytometry) in the lungs of wild-type and Pirb(-/-) mice after bleomycin or IL-4 treatment. Bone marrow-derived wild-type and Pirb(-/-) macrophages were stimulated with IL-4 and assessed for Relm-α and MMP-12 expression. PIR-B was up-regulated in lung myeloid cells after bleomycin administration. Bleomycin-treated Pirb(-/-) mice displayed increased lung histopathology and an increased expression of collagen and of the IL-4-associated profibrogenic markers Relm-α, MMP-12, TIMP-1, and osteopontin, which were localized to alveolar macrophages. Increased profibrogenic mediator expression in Pirb(-/-) mice was not attributable to increased IL-4/IL-13 concentrations, suggesting that PIR-B negatively regulates IL-4-induced macrophage activation. Indeed, IL-4-treated Pirb(-/-) mice displayed increased Relm-α expression and Relm-α(+) macrophage concentrations. IL-4-activated Pirb(-/-) macrophages displayed increased Relm-α and MMP-12 induction. Finally, leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3)/immunoglobulin-like transcript-5, the human PIR-B orthologue, was expressed and up-regulated in lung biopsies from patients with IPF. Our results establish a key role for PIR-B in IPF, likely via the regulation of macrophage activation. Therefore, PIR-B/LILRB3 may offer a possible target for suppressing macrophage profibrogenic activity in IPF.


Mucosal Immunology | 2014

CMRF35-like molecule 1 (CLM-1) regulates eosinophil homeostasis by suppressing cellular chemotaxis

I Moshkovits; D Shik; Michal Itan; Danielle Karo-Atar; B Bernshtein; A Y Hershko; M van Lookeren Campagne; Ariel Munitz

Eosinophil accumulation in health and disease is a hallmark characteristic of mucosal immunity and type 2 helper T cell (Th2) inflammation. Eotaxin-induced CCR3 (chemokine (C-C motif) receptor 3) signaling has a critical role in eosinophil chemotactic responses. Nevertheless, the expressions of immunoreceptor tyrosine-based inhibitory motif-bearing receptors such as CMRF35-like molecule-1 (CLM-1) and their ability to govern eosinophil migration are largely unknown. We now report that CLM-1 (but not CLM-8) is highly and distinctly expressed by colonic and adipose tissue eosinophils. Furthermore, Clm1−/− mice display elevated baseline tissue eosinophilia. CLM-1 negatively regulated eotaxin-induced eosinophil responses including eosinophil chemotaxis, actin polymerization, calcium influx, and extracellular signal-regulated kinase (ERK)-1/2, but not p38 phosphorylation. Addition of CLM-1 ligand (e.g., phosphatidylserine) rendered wild-type eosinophils hypochemotactic in vitro and blockade of CLM-1/ligand interactions rendered wild-type eosinophils hyperchemotactic in vitro and in vivo in a model of allergic airway disease. Interestingly, suppression of cellular recruitment via CLM-1 was specific to eosinophils and eotaxin, as leukotriene B4 (LTB4)- and macrophage inflammatory protein-1α (MIP-1α)-induced eosinophil and neutrophil migration were not negatively regulated by CLM-1. Finally, peripheral blood eosinophils obtained from allergic rhinitis patients displayed elevated CLM-1/CD300f levels. These data highlight CLM-1 as a novel regulator of eosinophil homeostasis and demonstrate that eosinophil accumulation is constantly governed by CLM-1, which negatively regulates eotaxin-induced eosinophil responses.


Mucosal Immunology | 2016

A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair

Danielle Karo-Atar; A Bordowitz; O Wand; M Pasmanik-Chor; I E Fernandez; M Itan; R Frenkel; De’Broski R. Herbert; F D Finkelman; O Eickelberg; Ariel Munitz

Molecular mechanisms that regulate lung repair vs. progressive scarring in pulmonary fibrosis remain elusive. Interleukin (IL)-4 and IL-13 are pro-fibrotic cytokines that share common receptor chains including IL-13 receptor (R) α1 and are key pharmacological targets in fibrotic diseases. However, the roles of IL-13Rα1 in mediating lung injury/repair are unclear. We report dysregulated levels of IL-13 receptors in the lungs of bleomycin-treated mice and to some extent in idiopathic pulmonary fibrosis patients. Transcriptional profiling demonstrated an epithelial cell-associated gene signature that was homeostatically dependent on IL-13Rα1 expression. IL-13Rα1 regulated a striking array of genes in the lung following bleomycin administration and Il13ra1 deficiency resulted in exacerbated bleomycin-induced disease. Increased pathology in bleomycin-treated Il13ra1−/− mice was due to IL-13Rα1 expression in structural and hematopoietic cells but not due to increased responsiveness to IL-17, IL-4, IL-13, increased IL-13Rα2 or type 1 IL-4R signaling. These data highlight underappreciated protective roles for IL-13Rα1 in lung injury and homeostasis.


Journal of Asthma | 2015

MicroRNA profiling reveals opposing expression patterns for miR-511 in alternatively and classically activated macrophages

Danielle Karo-Atar; Michal Itan; Metsada Pasmanik-Chor; Ariel Munitz

Abstract Background: Macrophages are heterogeneous cells, which possess pleotropic effector and immunoregulatory functions. The phenotypic diversity of macrophages is best exemplified by the ability of IL-4 or IL-13, two key cytokines in asthma to promote macrophages into a suppressive/anti-inflammatory phenotype (e.g. alternatively activated or M2) whereas exposure to IFN-γ followed by microbial trigger renders macrophages pro-inflammatory (e.g. classically activated or M1). Intriguingly, only limited data exists regarding the expression of miRNA in M2 macrophages. Objective: To define the miRNA profile of M2 and M1 macrophages. Methods: Bone marrow-derived macrophages were activated to classically and alternatively activated states using IL-4, IL-13 or IFN-γ followed by Escherichia coli stimulation. Thereafter, an unbiased miRNA “mining” approach was utilized and the expression of several miRNAs was validated following in-vitro and in-vivo macrophage activation (qPCR). miR-511 over-expression was performed followed by global transcriptional and bioinformatic analyses. Results: We report unique miRNA expression profiles in M2 and M1 macrophages involving multiple miRNAs. Among these miRNAs, we established that miR-511 is increased in macrophages following IL-4- and IL-13-stimulation and decreased in M1 macrophages both in-vitro and in-vivo. Increased miR-511 expression was sufficient to induce marked transcriptional changes in macrophages. Interestingly, bioinformatics analyses revealed that miR-511 altered the expression of gene products that are associated with hallmark alternatively activated macrophage functions, such as cellular proliferation, wound healing responses and inflammation. Conclusions: Our data establish miR-511 as a bona fide M2-associated miRNA. These data may have significant implications in asthma where the expression of IL-4 and IL-13 are highly increased.


Allergy | 2014

Interleukin-33 requires CMRF35-like molecule-1 expression for induction of myeloid cell activation.

Dana Shik; Itay Moshkovits; Danielle Karo-Atar; Hadar Reichman; Ariel Munitz

IL‐33 is a potent activator of various cells involved in allergic inflammation, including eosinophils and mast cells. Despite its critical role in Th2 disease settings, endogenous molecular mechanisms that may regulate IL‐33‐induced responses remain to be defined. We have recently shown that eosinophils express CMRF35‐like molecule (CLM)‐1. Yet, the role of CLM‐1 in regulating eosinophil functions is still elusive.


Mucosal Immunology | 2017

A key requirement for CD300f in innate immune responses of eosinophils in colitis

Itay Moshkovits; Hadar Reichman; Danielle Karo-Atar; P Rozenberg; E Zigmond; N Ben Baruch-Morgenstern; M Lampinen; M Carlson; Michal Itan; Lee A. Denson; C Varol; Ariel Munitz

Eosinophils are traditionally studied in the context of type 2 immune responses. However, recent studies highlight key innate immune functions for eosinophils especially in colonic inflammation. Surprisingly, molecular pathways regulating innate immune activities of eosinophil are largely unknown. We have recently shown that the CD300f is highly expressed by colonic eosinophils. Nonetheless, the role of CD300f in governing innate immune eosinophil activities is ill-defined. RNA sequencing of 162 pediatric Crohn’s disease patients revealed upregulation of multiple Cd300 family members, which correlated with the presence of severe ulcerations and inflammation. Increased expression of CD300 family receptors was also observed in active ulcerative colitis (UC) and in mice following induction of experimental colitis. Specifically, the expression of CD300f was dynamically regulated in monocytes and eosinophils. Dextran sodium sulfate (DSS)-treated Cd300f−/− mice exhibit attenuated disease activity and histopathology in comparison with DSS-treated wild type (WT). Decreased disease activity in Cd300f−/− mice was accompanied with reduced inflammatory cell infiltration and nearly abolished production of pro-inflammatory cytokines. Monocyte depletion and chimeric bone marrow transfer experiments revealed a cell-specific requirement for CD300f in innate immune activation of eosinophils. Collectively, we uncover a new pathway regulating innate immune activities of eosinophils, a finding with significant implications in eosinophil-associated gastrointestinal diseases.


Journal of the American Heart Association | 2017

New Role for Interleukin‐13 Receptor α1 in Myocardial Homeostasis and Heart Failure

Uri Amit; David Kain; Allon Wagner; Avinash Das Sahu; Yael Nevo‐Caspi; Nir Gonen; Natali Molotski; Tal Konfino; Natalie Landa; Nili Naftali-Shani; Galia Blum; Emmanuelle Merquiol; Danielle Karo-Atar; Yariv Kanfi; Gidi Paret; Ariel Munitz; Haim Y. Cohen; Eytan Ruppin; Sridhar Hannenhalli; Jonathan Leor

Background The immune system plays a pivotal role in myocardial homeostasis and response to injury. Interleukins‐4 and ‐13 are anti‐inflammatory type‐2 cytokines, signaling via the common interleukin‐13 receptor α1 chain and the type‐2 interleukin‐4 receptor. The role of interleukin‐13 receptor α1 in the heart is unknown. Methods and Results We analyzed myocardial samples from human donors (n=136) and patients with end‐stage heart failure (n=177). We found that the interleukin‐13 receptor α1 is present in the myocardium and, together with the complementary type‐2 interleukin‐4 receptor chain Il4ra, is significantly downregulated in the hearts of patients with heart failure. Next, we showed that Il13ra1‐deficient mice develop severe myocardial dysfunction and dyssynchrony compared to wild‐type mice (left ventricular ejection fraction 29.7±9.9 versus 45.0±8.0; P=0.004, left ventricular end‐diastolic diameter 4.2±0.2 versus 3.92±0.3; P=0.03). A bioinformatic analysis of mouse hearts indicated that interleukin‐13 receptor α1 regulates critical pathways in the heart other than the immune system, such as extracellular matrix (normalized enrichment score=1.90; false discovery rate q=0.005) and glucose metabolism (normalized enrichment score=−2.36; false discovery rate q=0). Deficiency of Il13ra1 was associated with reduced collagen deposition under normal and pressure‐overload conditions. Conclusions The results of our studies in humans and mice indicate, for the first time, a role of interleukin‐13 receptor α1 in myocardial homeostasis and heart failure and suggests a new therapeutic target to treat heart disease.

Collaboration


Dive into the Danielle Karo-Atar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc E. Rothenberg

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steffen Jung

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angel Porgador

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge