Danielle L. Slomberg
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Danielle L. Slomberg.
ACS Nano | 2011
Alexis W. Carpenter; Danielle L. Slomberg; Kavitha S. Rao; Mark H. Schoenfisch
A reverse microemulsion synthesis was used to prepare amine-functionalized silica nanoparticles of three distinct sizes (i.e., 50, 100, and 200 nm) with similar amine content. The resulting hybrid nanoparticles, consisting of N-(6-aminohexyl)aminopropyltrimethoxysilane and tetraethoxysilane, were highly monodisperse in size. N-Diazeniumdiolate nitric oxide (NO) donors were subsequently formed on secondary amines while controlling reaction conditions to keep the total amount of NO released constant for each particle size. The bactericidal efficacy of the NO-releasing nanoparticles against Pseudomonas aeruginosa increased with decreasing particle size. Additionally, smaller diameter nanoparticles were found to associate with the bacteria at a faster rate and to a greater extent than larger particles. Neither control (non-NO-releasing) nor NO-releasing particles exhibited toxicity toward L929 mouse fibroblasts at concentrations above their respective minimum bactericidal concentrations. This study represents the first investigation of the bactericidal efficacy of NO-releasing silica nanoparticles as a function of particle size.
Biomacromolecules | 2012
Bin Sun; Danielle L. Slomberg; Shalini L. Chudasama; Yuan Lu; Mark H. Schoenfisch
The antibacterial activity of a series of nitric oxide (NO)-releasing poly(propylene imine) (PPI) dendrimers was evaluated against both Gram-positive and Gram-negative pathogenic bacteria, including methicillin-resistant Staphylococcus aureus . A direct comparison of the bactericidal efficacy between NO-releasing and control PPI dendrimers (i.e., non-NO-releasing) revealed both enhanced biocidal action of NO-releasing dendrimers and reduced toxicity against mammalian fibroblast cells. Antibacterial activity for the NO donor-functionalized PPI dendrimers was shown to be a function of both dendrimer size (molecular weight) and exterior functionality. In addition to minimal toxicity against fibroblasts, NO-releasing PPI dendrimers modified with styrene oxide exhibited the greatest biocidal activity (≥99.999% killing) against all bacterial strains tested. The N-diazeniumdiolate NO donor-functionalized PPI dendrimers presented in this study hold promise as effective NO-based therapeutics for combating bacterial infections.
Biomaterials | 2014
Yuan Lu; Danielle L. Slomberg; Mark H. Schoenfisch
Secondary amine-functionalized chitosan oligosaccharides of different molecular weights (i.e., ~2500, 5000, 10,000) were synthesized by grafting 2-methyl aziridine from the primary amines on chitosan oligosaccharides, followed by reaction with nitric oxide (NO) gas under basic conditions to yield N-diazeniumdiolate NO donors. The total NO storage, maximum NO flux, and half-life of the resulting NO-releasing chitosan oligosaccharides were controlled by the molar ratio of 2-methyl aziridine to primary amines (e.g., 1:1, 2:1) and the functional group surrounding the N-diazeniumdiolates (e.g., polyethylene glycol (PEG) chains), respectively. The secondary amine-modified chitosan oligosaccharides greatly increased the NO payload over existing biodegradable macromolecular NO donors. In addition, the water-solubility of the chitosan oligosaccharides enabled their penetration across the extracellular polysaccharides matrix of Pseudomonas aeruginosa biofilms and association with embedded bacteria. The effectiveness of these chitosan oligosaccharides at biofilm eradication was shown to depend on both the molecular weight and ionic characteristics. Low molecular weight and cationic chitosan oligosaccharides exhibited rapid association with bacteria throughout the entire biofilm, leading to enhanced biofilm killing. At concentrations resulting in 5-log killing of bacteria in Pseudomonas aeruginosa (P. aeruginosa) biofilms, the NO-releasing and control chitosan oligosaccharides elicited no significant cytotoxicity to mouse fibroblast L929 cells in vitro.
Biomacromolecules | 2013
Yuan Lu; Danielle L. Slomberg; Anand Shah; Mark H. Schoenfisch
A series of amphiphilic nitric oxide (NO)-releasing poly(amidoamine) (PAMAM) dendrimers with different exterior functionalities were synthesized by a ring-opening reaction between primary amines on the dendrimer and propylene oxide (PO), 1,2-epoxy-9-decene (ED), or a ratio of the two, followed by reaction with NO at 10 atm to produce N-diazeniumdiolate-modified scaffolds with a total storage of ~1 μmol/mg. The hydrophobicity of the exterior functionality was tuned by varying the ratio of PO and ED grafted onto the dendrimers. The bactericidal efficacy of these NO-releasing vehicles against established Gram-negative Pseudomonas aeruginosa biofilms was then evaluated as a function of dendrimer exterior hydrophobicity (i.e., ratio of PO/ED), size (i.e., generation), and NO release. Both the size and exterior functionalization of dendrimer proved important to a number of parameters including dendrimer-bacteria association, NO delivery efficiency, bacteria membrane disruption, migration within the biofilm, and toxicity to mammalian cells. Although enhanced bactericidal efficacy was observed for the hydrophobic chains (e.g., ED), toxicity to L929 mouse fibroblast cells was also noted at concentrations necessary to reduce bacterial viability by 5-logs (99.999% killing). The optimal PO to ED ratios for biofilm eradication with minimal toxicity against L929 mouse fibroblast cells were 7:3 and 5:5. The study presented herein demonstrated the importance of both dendrimer size and exterior properties in determining efficacy against established biofilms without compromising biocompatibility to mammalian cells.
ACS Applied Materials & Interfaces | 2013
Danielle L. Slomberg; Yuan Lu; Angela D. Broadnax; Rebecca A. Hunter; Alexis W. Carpenter; Mark H. Schoenfisch
Nitric oxide (NO), a reactive free radical, has proven effective in eradicating bacterial biofilms with reduced risk of fostering antibacterial resistance. Herein, we evaluated the efficacy of NO-releasing silica nanoparticles against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus biofilms as a function of particle size and shape. Three sizes of NO-releasing silica nanoparticles (i.e., 14, 50, and 150 nm) with identical total NO release (∼0.3 μmol/mg) were utilized to study antibiofilm eradication as a function of size. To observe the role of particle shape on biofilm killing, we varied the aspect ratio of the NO-releasing silica particles from 1 to 8 while maintaining constant particle volume (∼0.02 μm(3)) and NO-release totals (∼0.7 μmol/mg). Nitric oxide-releasing particles with decreased size and increased aspect ratio were more effective against both P. aeruginosa and S. aureus biofilms, with the Gram-negative species exhibiting the greatest susceptibility to NO. To further understand the influence of these nanoparticle properties on NO-mediated antibacterial activity, we visualized intracellular NO concentrations and cell death with confocal microscopy. Smaller NO-releasing particles (14 nm) exhibited better NO delivery and enhanced bacteria killing compared to the larger (50 and 150 nm) particles. Likewise, the rod-like NO-releasing particles proved more effective than spherical particles in delivering NO and inducing greater antibacterial action throughout the biofilm.
Environmental Science & Technology | 2012
Danielle L. Slomberg; Mark H. Schoenfisch
The phytotoxicity of silica nanoparticles (SiNPs) was evaluated as a function of particle size (14, 50, and 200 nm), concentration (250 and 1000 mg L(-1)), and surface composition toward Arabidopsis thaliana plants grown hydroponically for 3 and 6 weeks. Reduced development and chlorosis were observed for plants exposed to highly negative SiNPs (-20.3 and -31.9 mV for the 50 and 200 nm SiNPs, respectively) regardless of particle concentration when not controlling pH of the hydroponic medium, which resulted in increased alkalinity (~pH 8). Particles were no longer toxic to the plants at either concentration upon calcination or removal of surface silanols from the SiNP surface, or adjusting the pH of the growth medium to pH 5.8. The phytotoxic effects observed for the negatively charged 50 and 200 nm SiNPs were attributed to pH effects and the adsorption of macro- and micro-nutrients to the silica surface. Size-dependent uptake of the nanoparticles by the plants was confirmed using transmission electron microscopy (TEM) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) with plant roots containing 32.0, 1.85, and 7.00 × 10(-3) mg Si·kg tissue(-1)/nm(3) (normalized for SiNP volume) for the 14, 50, and 200 nm SiNPs respectively, after 6 weeks exposure at 1000 ppm (pH 5.8). This study demonstrates that the silica scaffolds are not phytotoxic up to 1000 ppm despite significant uptake of the SiNPs (14, 50, and 200 nm) into the root system of A. thaliana.
Biomacromolecules | 2012
Alexis W. Carpenter; Brittany V. Worley; Danielle L. Slomberg; Mark H. Schoenfisch
The synthesis of quaternary ammonium (QA)-functionalized silica nanoparticles with and without nitric oxide (NO) release capabilities is described. Glycidyltrialkylammonium chlorides of varied alkyl chain lengths (i.e., methyl, butyl, octyl, and dodecyl) were tethered to the surface of amine-containing silica nanoparticles via a ring-opening reaction. Secondary amines throughout the particle were then functionalized with N-diazeniumdiolate NO donors to yield dual functional nanomaterials with surface QAs and total NO payloads of 0.3 μmol/mg. The bactericidal activities of singly (i.e., only NO-releasing or only QA-functionalized) and dual (i.e., NO-releasing and QA-functionalized) functional nanoparticles were tested against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa . Particles with only NO release capabilities alone were found to be more effective against P. aeruginosa , while particles with only QA-functionalities exhibited greater toxicity toward S. aureus . The minimum bactericidal concentrations (MBC) of QA-functionalized particles decreased with increasing alkyl chain length against both microbes tested. Combining NO release and QA-functionalities on the same particle resulted in an increase in bactericidal efficacy against S. aureus ; however, no change in activity against P. aeruginosa was observed compared to NO-releasing particles alone.
Bioconjugate Chemistry | 2014
Brittany V. Worley; Danielle L. Slomberg; Mark H. Schoenfisch
Herein we describe the synthesis of nitric oxide (NO)-releasing quaternary ammonium (QA)-functionalized generation 1 (G1) and generation 4 (G4) poly(amidoamine) (PAMAM) dendrimers. Dendrimers were modified with QA moieties of different alkyl chain lengths (i.e., methyl, butyl, octyl, dodecyl) via a ring-opening reaction. The resultant secondary amines were then modified with N-diazeniumdiolate NO donors to yield NO-releasing QA-modified PAMAM dendrimers capable of spontaneous NO release (payloads of ~0.75 μmol/mg over 4 h). The bactericidal efficacy of individual (i.e., non-NO-releasing) and dual action (i.e., NO-releasing) QA-modified PAMAM dendrimers was evaluated against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacteria. Bactericidal activity was found to be dependent on dendrimer generation, QA alkyl chain length, and bacterial Gram class for both systems. Shorter alkyl chains (i.e., methylQA, butylQA) demonstrated increased bactericidal activity against P. aeruginosa versus S. aureus for both generations, with NO release markedly enhancing overall killing.
Small | 2013
Yuan Lu; Danielle L. Slomberg; Bin Sun; Mark H. Schoenfisch
Silica nanorods (SNRs) are synthesized and then functionalized with aminoalkoxysilanes to prepare a new class of nitric oxide (NO)-releasing materials. The aspect ratio and size of the SNRs are tuned by varying the temperature, pH, and silane concentration used during the surfactant-templated synthesis. N-Diazeniumdiolate nitric oxide (NO) donors are formed on the secondary amine-functionalized SNRs by reaction with NO gas under basic conditions. Particle surface modifications are employed to manipulate the NO release kinetics. The diverse morphology (i.e., aspect ratio ∼1-8), NO-release kinetics (2000-14,000 ppb NO/mg particle) and similar sizes (i.e., particle volume ∼0.02 μm³) of the resulting NO-releasing SNRs facilitates further studies of how particle shape and NO flux impacts bactericidal activity against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacteria. The bactericidal efficacies of these materials improves with increasing particle aspect ratio and initial NO flux. Both chemical (i.e., NO-release kinetics) and physical (i.e., morphology) properties greatly influenced the bactericidal activity of these materials.
Biomaterials | 2012
Scott P. Nichols; Ahyeon Koh; Nga L. Brown; Michael B. Rose; Bin Sun; Danielle L. Slomberg; Daniel A. Riccio; Bruce Klitzman; Mark H. Schoenfisch
Although the release of nitric oxide (NO) from biomaterials has been shown to reduce the foreign body response (FBR), the optimal NO release kinetics and doses remain unknown. Herein, polyurethane-coated wire substrates with varying NO release properties were implanted into porcine subcutaneous tissue for 3, 7, 21 and 42 d. Histological analysis revealed that materials with short NO release durations (i.e., 24 h) were insufficient to reduce the collagen capsule thickness at 3 and 6 weeks, whereas implants with longer release durations (i.e., 3 and 14 d) and greater NO payloads significantly reduced the collagen encapsulation at both 3 and 6 weeks. The acute inflammatory response was mitigated most notably by systems with the longest duration and greatest dose of NO release, supporting the notion that these properties are most critical in circumventing the FBR for subcutaneous biomedical applications (e.g., glucose sensors).