Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danielle Pereira Cavalcanti is active.

Publication


Featured researches published by Danielle Pereira Cavalcanti.


International Journal of Antimicrobial Agents | 2011

Effect of topoisomerase inhibitors and DNA-binding drugs on the cell proliferation and ultrastructure of Trypanosoma cruzi

Aline Araujo Zuma; Danielle Pereira Cavalcanti; Marina C.P. Maia; Wanderley de Souza; Maria Cristina M. Motta

Trypanosomatids present unusual organelles, such as the kinetoplast that contains the mitochondrial DNA arranged in catenated circles. The nucleus of these protozoa presents distinct domains during interphase as well as a closed mitosis. DNA topoisomerases modulate the topological state of DNA by regulating supercoiling of the double-stranded DNA during replication, transcription, recombination and repair. Because topoisomerases play essential roles in cellular processes, they constitute a potential target for antitumour and antimicrobial drugs. In this study, the effects of various topoisomerase inhibitors and DNA-binding drugs were tested on the cellular proliferation and ultrastructure of the Trypanosoma cruzi epimastigote form Blastocrithidia culicis was used as a comparative model, which has a more relaxed kinetoplast DNA (kDNA) organization. The results showed that the eukaryotic topoisomerase I inhibitors camptothecin and rebeccamycin were the most effective compounds in the arrest of T. cruzi proliferation. Of the eukaryotic topoisomerase II inhibitors, mitoxantrone, but not merbarone, was effective against cell proliferation. The prokaryotic topoisomerase II inhibitors norfloxacin and enoxacin targeted the kinetoplast specifically, thus promoting ultrastructural kDNA rearrangement in B. culicis. Of the DNA-binding drugs, berenil caused remarkable kDNA disorganization. With the exception of camptothecin, there have been no previous evaluations of the compounds tested here on trypanosomatid ultrastructure. In conclusion, inhibitors of the same class may have different effects on trypanosomatid proliferation and ultrastructure. The results obtained in this work may help to reveal the mechanism of action of different topoisomerase inhibitors in trypanosomatids.


Parasitology Research | 2004

The effect of topoisomerase II inhibitors on the kinetoplast ultrastructure

Danielle Pereira Cavalcanti; Stenio Perdigão Fragoso; Samuel Goldenberg; Wanderley de Souza; Maria Cristina M. Motta

Topoisomerases from trypanosomatids play key functions in the replication and organization of kinetoplast DNA (kDNA). Hence, they are considered as potential targets for anti-parasite drugs. In this paper, the effect of topoisomerase II inhibitors, such as nalidixic acid, novobiocin and etoposide, on the ultrastructure of trypanosomatids that present distinct kDNA arrangements was evaluated. Prokaryotic topoisomerase II inhibitors were more effective on growth arrest and ultrastructure changes than etoposide, a eukaryotic topoisomerase II inhibitor. With the exception of novobiocin, drug concentrations which inhibited cell proliferation also promoted kinetoplast ultrastructure alterations, including the redistribution of topoisomerase II. The data reinforce the concept that prokaryotic topoisomerase II inhibitors may offer greater selectivity in drug therapy of trypanosomatid infections.


Molecular and Biochemical Parasitology | 2010

Knockout of the gene encoding the kinetoplast-associated protein 3 (KAP3) in Trypanosoma cruzi: Effect on kinetoplast organization, cell proliferation and differentiation ☆

Flávia S.P. Souza; Rita de Cássia Pontello Rampazzo; Lauro Manhães; Maurilio J. Soares; Danielle Pereira Cavalcanti; Marco A. Krieger; Samuel Goldenberg; Stenio Perdigão Fragoso

Kinetoplast DNA (kDNA) of trypanosomatid protozoa consists of an unusual arrangement of two types of circular molecules catenated into a single network: (1) a few maxicircles that encode various mitochondrial enzyme subunits and rRNA in a cryptic pattern and (2) thousands of minicircles that encode guide RNAs (gRNAs). kDNA is associated with proteins, known as kinetoplast-associated proteins (KAPs), which condense the kDNA network. However, little is known about the KAPs of Trypanosoma cruzi, a parasite that displays different kDNA condensation patterns during its complex morphogenetic development. We cloned the T. cruzi gene encoding TcKAP3 (kinetoplast-associated protein 3). TcKAP3 is a single-copy gene that is transcribed into a 1.8-kb mRNA molecule and expressed in all stages of the parasite. Mouse antiserum raised against recombinant TcKPA3 recognized a 21.8kDa protein, which was found, by indirect immunofluorescence and immunoelectron microscopy, to be associated with the T. cruzi kinetoplast. Several features of TcKAP3, such as its small size, basic nature and similarity with KAP3 from the insect trypanosomatid Crithidia fasciculata, are consistent with a role in DNA charge neutralization and condensation. This suggests that this protein is involved in organizing the kDNA network. Gene deletion was used to investigate TcKAP3 function. Here we investigated the T. cruzi KAP3 null mutant, analyzing its fitness during proliferation, differentiation and infectivity.


Histochemistry and Cell Biology | 2008

The kinetoplast ultrastructural organization of endosymbiont-bearing trypanosomatids as revealed by deep-etching, cytochemical and immunocytochemical analysis.

Danielle Pereira Cavalcanti; Marc Thiry; Wanderley de Souza; Maria Cristina M. Motta

The endosymbiont-bearing trypanosomatids present a typical kDNA arrangement, which is not well characterized. In the majority of trypanosomatids, the kinetoplast forms a bar-like structure containing tightly packed kDNA fibers. On the contrary, in trypanosomatids that harbor an endosymbiotic bacterium, the kDNA fibers are disposed in a looser arrangement that fills the kinetoplast matrix. In order to shed light on the kinetoplast structural organization in these protozoa, we used cytochemical and immunocytological approaches. Our results showed that in endosymbiont-containing species, DNA and basic proteins are distributed not only in the kDNA network, but also in the kinetoflagellar zone (KFZ), which corresponds to the region between the kDNA and the inner mitochondrial membrane nearest the flagellum. The presence of DNA in the KFZ is in accordance with the actual model of kDNA replication, whereas the detection of basic proteins in this region may be related to the basic character of the intramitochondrial filaments found in this area, which are part of the complex that connects the kDNA to the basal body. The kinetoplast structural organization of Bodo sp. was also analyzed, since this protozoan lacks the highly ordered kDNA-packaging characteristic of trypanosomatid and represents an evolutionary ancestral of the Trypanosomatidae family.


BMC Microbiology | 2009

Expression and subcellular localization of kinetoplast-associated proteins in the different developmental stages of Trypanosoma cruzi

Danielle Pereira Cavalcanti; Márcia Kiyoe Shimada; Christian Macagnan Probst; Thaïs Souto-Padrón; Wanderley de Souza; Samuel Goldenberg; Stenio Perdigão Fragoso; Maria Cristina M. Motta

BackgroundThe kinetoplast DNA (kDNA) of trypanosomatids consists of an unusual arrangement of circular molecules catenated into a single network. The diameter of the isolated kDNA network is similar to that of the entire cell. However, within the kinetoplast matrix, the kDNA is highly condensed. Studies in Crithidia fasciculata showed that kinetoplast-associated proteins (KAPs) are capable of condensing the kDNA network. However, little is known about the KAPs of Trypanosoma cruzi, a parasitic protozoon that shows distinct patterns of kDNA condensation during their complex morphogenetic development. In epimastigotes and amastigotes (replicating forms) the kDNA fibers are tightly packed into a disk-shaped kinetoplast, whereas trypomastigotes (non-replicating) present a more relaxed kDNA organization contained within a rounded structure. It is still unclear how the compact kinetoplast disk of epimastigotes is converted into a globular structure in the infective trypomastigotes.ResultsIn this work, we have analyzed KAP coding genes in trypanosomatid genomes and cloned and expressed two kinetoplast-associated proteins in T. cruzi: TcKAP4 and TcKAP6. Such small basic proteins are expressed in all developmental stages of the parasite, although present a differential distribution within the kinetoplasts of epimastigote, amastigote and trypomastigote forms.ConclusionSeveral features of TcKAPs, such as their small size, basic nature and similarity with KAPs of C. fasciculata, are consistent with a role in DNA charge neutralization and condensation. Additionally, the differential distribution of KAPs in the kinetoplasts of distinct developmental stages of the parasite, indicate that the kDNA rearrangement that takes place during the T. cruzi differentiation process is accompanied by TcKAPs redistribution.


Parasitology Research | 2015

Unveiling the effects of berenil, a DNA-binding drug, on Trypanosoma cruzi: implications for kDNA ultrastructure and replication

Aline Araujo Zuma; Danielle Pereira Cavalcanti; Marcelo Zogovich; Ana Machado; Isabela Cecília Mendes; Marc Thiry; Antonio Galina; Wanderley de Souza; Carlos Renato Machado; Maria Cristina M. Motta

Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a single mitochondrion with an enlarged portion termed kinetoplast. This unique structure harbors the mitochondrial DNA (kDNA), composed of interlocked molecules: minicircles and maxicircles. kDNA is a hallmark of kinetoplastids and for this reason constitutes a valuable target in chemotherapeutic and cell biology studies. In the present work, we analyzed the effects of berenil, a minor-groove-binding agent that acts preferentially at the kDNA, thereby affecting cell proliferation, ultrastructure, and mitochondrial activity of T. cruzi epimastigote form. Our results showed that berenil promoted a reduction on parasite growth when high concentrations were used; however, cell viability was not affected. This compound caused significant changes in kDNA arrangement, including the appearance of membrane profiles in the network and electron-lucent areas in the kinetoplast matrix, but nuclear ultrastructure was not modified. The use of the TdT technique, which specifically labels DNA, conjugated to atomic force microscopy analysis indicates that berenil prevents the minicircle decatenation of the network, thus impairing DNA replication and culminating in the appearance of dyskinetoplastic cells. Alterations in the kinetoplast network may be associated with kDNA lesions, as suggested by the quantitative PCR (qPCR) technique. Furthermore, parasites treated with berenil presented higher levels of reactive oxygen species and a slight decrease in the mitochondrial membrane potential and oxygen consumption. Taken together, our results reveal that this DNA-binding drug mainly affects kDNA topology and replication, reinforcing the idea that the kinetoplast represents a potential target for chemotherapy against trypanosomatids.


Micron | 2011

The structure of the kinetoplast DNA network of Crithidia fasciculata revealed by atomic force microscopy.

Danielle Pereira Cavalcanti; Daniela Leão Gonçalves; Lilian T. Costa; Wanderley de Souza

DNA is the biopolymer most studied by scanning probe methods, and it is now possible to obtain reliable and reproducible images of DNA using atomic force microscopy (AFM). AFM has been extensively used to elucidate morphological changes to DNA structure, such as the formation of knots, nicks, supercoiling and bends. The mitochondrial or kinetoplast DNA (kDNA) of trypanosomatids is the most unusual DNA found in nature, being unique in organization and replication. The kDNA is composed of thousands of topologically interlocked DNA circles that form a giant network. To understand the biological significance of the kinetoplast DNA, it is necessary to learn more about its structure. In the present work, we used two procedures to prepare kDNA networks of Crithidia fasciculata for observation by AFM. Because AFM allows for the examination of kDNA at high resolution, we were able to identify regions of overlapping kDNA molecules and sites where several molecules cross. This found support the earlier described kDNA structural organization as composed by interlocked circles. We also observed an intricate high-density height pattern around the periphery of the network of C. fasciculata, which appears to be a bundle of DNA fibers that organizes the border of the network. Our present data confirm that AFM is a powerful tool to study the structural organization of biological samples, including complex arrays of DNA such as kDNA, and can be useful in revealing new details of structures previously visualized by other means.


Parasitology | 2013

Acriflavine treatment promotes dyskinetoplasty in Trypanosoma cruzi as revealed by ultrastructural analysis

Thiago Manchester; Danielle Pereira Cavalcanti; Marcelo Zogovich; Wanderley de Souza; Maria Cristina M. Motta

Trypanosomatid mitochondrial DNA is structured as a giant network of thousands of interlocked DNA molecules enclosed within the kinetoplast. The structure and replication mechanism of kinetoplast DNA (kDNA) is unique, thereby making it an excellent chemotherapeutic target. Alteration in the structural organization of kDNA can give rise to dyskinetoplastic (Dk) strains. In Dk cells, the kDNA is dispersed in clumps throughout the mitochondrial matrix and not organized into a network. In this work, Trypanosoma cruzi epimastigotes were treated with acriflavine, a DNA intercalating drug, which promoted a decrease in cell proliferation and induced the appearance of Dk protozoa. In treated cells, the kinetoplast lost its normal disc-shaped structure because the fibrillar arrangement was reduced to a compact, amorphous mass within the mitochondrion. Moreover, basic proteins associated with kDNA were redistributed throughout the Dk protozoal kinetoplast. We sought to understand how the disruption of the kDNA leads to the emergence of the Dk phenotype with atomic force microscopy (AFM) analysis of isolated networks. Our results demonstrate that the detachment of minicircles from the kDNA disk promotes the disassembly of the network, thereby generating Dk cells. Our data strongly suggest that acriflavine inhibits T. cruzi multiplication by interfering with kDNA replication.


Parasites & Vectors | 2018

Revisiting the Trypanosoma cruzi metacyclogenesis: morphological and ultrastructural analyses during cell differentiation

Camila Silva Gonçalves; Andréa Rodrigues Ávila; Wanderley de Souza; Maria Cristina M. Motta; Danielle Pereira Cavalcanti

BackgroundTrypanosoma cruzi uses several strategies to survive in different hosts. A key step in the life-cycle of this parasite is metacyclogenesis, which involves various morphological, biochemical, and genetic changes that induce the differentiation of non-pathogenic epimastigotes into pathogenic metacyclic trypomastigotes. During metacyclogenesis, T. cruzi displays distinct morphologies and ultrastructural features, which have not been fully characterized.ResultsWe performed a temporal description of metacyclogenesis using different microscopy techniques that resulted in the identification of three intermediate forms of T. cruzi: intermediates I, II and III. Such classification was based on morphological and ultrastructural aspects as the location of the kinetoplast in relation to the nucleus, kinetoplast shape and kDNA topology. Furthermore, we suggested that metacyclic trypomastigotes derived from intermediate forms that had already detached from the substrate. We also found that changes in the kinetoplast morphology and kDNA arrangement occurred only after the repositioning of this structure toward the posterior region of the cell body. These changes occurred during the later stages of differentiation. In contrast, changes in the nucleus shape began as soon as metacyclogenesis was initiated, while changes in nuclear ultrastructure, such as the loss of the nucleolus, were only observed during later stages of differentiation. Finally, we found that kDNA networks of distinct T. cruzi forms present different patterns of DNA topology.ConclusionsOur study of T. cruzi metacyclogenesis revealed important aspects of the morphology and ultrastructure of this intriguing cell differentiation process. This research expands our understanding of this parasite’s fascinating life-cycle. It also highlights the study of T. cruzi as an important and exciting model system for investigating diverse aspects of cellular, molecular, and evolutionary biology.


PLOS ONE | 2017

Expanded repertoire of kinetoplast associated proteins and unique mitochondrial DNA arrangement of symbiont-bearing trypanosomatids

Silvana S. Souza; Carolina Moura Costa Catta-Preta; João M. P. Alves; Danielle Pereira Cavalcanti; Marta M. G. Teixeira; Erney P. Camargo; Wanderley de Souza; Rosane Silva; Maria Cristina M. Motta

In trypanosomatids, the kinetoplast is the portion of the single mitochondrion that is connected to the basal body and contains the kDNA, a network composed by circular and interlocked DNA. The kDNA packing is conducted by Kinetoplast Associated Proteins (KAPs), which are similar to eukaryotic histone H1. In symbiont-harboring trypanosomatids (SHTs) such as Angomonas deanei and Strigomonas culicis, a ß-proteobacterium co-evolves with the host in a mutualistic relationship. The prokaryote confers nutritional benefits to the host and affects its cell structure. Atomic force microscopy showed that the topology of isolated kDNA networks is quite similar in the two SHT species. Ultrastructural analysis using high-resolution microscopy techniques revealed that the DNA fibrils are more compact in the kinetoplast region that faces the basal body and that the presence of the symbiotic bacterium does not interfere with kDNA topology. However, RT-PCR data revealed differences in the expression of KAPs in wild-type protozoa as compared to aposymbiotic cells. Immunolocalization showed that different KAPs present distinct distributions that are coincident in symbiont-bearing and in symbiont-free cells. Although KAP4 and KAP7 are shared by all trypanosomatid species, the expanded repertoire of KAPs in SHTs can be used as phylogenetic markers to distinguish different genera.

Collaboration


Dive into the Danielle Pereira Cavalcanti's collaboration.

Top Co-Authors

Avatar

Wanderley de Souza

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Maria Cristina M. Motta

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aline Araujo Zuma

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Antonio Galina

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Carolina Moura Costa Catta-Preta

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Marcelo Zogovich

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

W. de Souza

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge